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Motor overshoot prediction and optimization of a two-stage compensation
strategy for lower limb exoskeletons

Shi Xin',Tang Jia',Fan Zhirui', Yang Zixiang' ,Qin Pengjie’
(1. School of Automation, Chongqing University, Chongqing 400044, China; 2. School of Artificial Intelligence,
Shenzhen University, Shenzhen 518055, China)

Abstract: Lower limb exoskeleton technology can assist in enhancing human strength and has a wide range of applications. However,
exoskeleton motors exhibit dynamic nonlinearity due to electromagnetic inertia and mechanical loads, leading to overshoot that causes
mismatches in human-machine collaborative motion responses and increases the risk of biomechanical injury. To address the inertial
overshoot issue in exoskeleton motors during the leg-lifting phase of human walking, a two-stage collaborative overshoot prediction and
optimization strategy is proposed, integrating inverse system model prediction with forward model optimization. By constructing a reverse
system model based on a CNN-LSTM-Attention architecture, the system receives real-time motor target outputs, effectively captures
multivariate time-series patterns, and rapidly generates the initial input commands for the exoskeleton motor. A forward optimization
model based on a pyramid feature fusion-CNN-bi-LSTM-Transformer ( Pyramid-CLT) architecture is constructed. The model employs a
gating mechanism together with pyramid-shaped fully connected layers to achieve multi-scale feature integration. The mean squared error
between the predicted output and the target output serves as the objective function. To further improve the prediction accuracy, a particle

swarm optimization (PSO) algorithm is applied to iteratively refine samples with high mean square error, enabling the generation of
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precise motor control commands for overshoot compensation. Experimental that the prediction optimization strategy can precisely generate

exoskeleton motor input commands based on human movement trajectories, achieving a model correlation coefficient ( R*) of 0. 985, root

mean square error ( RMSE) of 0.537, and mean absolute error (MAE) of 0.442; Compared with single-model algorithms and other

prediction algorithms, the proposed method achieves real-time dynamic prediction and correction of overshoot, enabling motor output to

closely align with human movement trajectories, thereby effectively enhancing human-machine synergy and providing a new method for

precise control of lower-limb exoskeletons.

Keywords :lower limb exoskeleton; exoskeleton motor; human-machine collaboration; overshooting; selective optimization
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Fig.2  Prediction of hip joint angle during human
walking based on sEMG
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Fig. 3 Overall architecture of a two-stage collaborative overshoot prediction optimization strategy combining

reverse system model prediction and forward model optimization
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Table 1 Sensor name and model
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Table 2 Evaluation results of hyperparameter selection for
the inverse system model based on CNN-LSTM-Attention

SRR ZHE RMSE MAE R?
1 0. 846 0. 601 0.793
BIHZE 2 0. 655 0.517 0.980
3 0. 830 0.584 0.812
1 0. 805 0. 555 0.814
LSTM Wi 2% 2 0. 655 0.517 0. 980
3 0. 805 0. 554 0. 824
32 0. 820 0. 567 0. 825
64 0. 655 0.517 0. 980
LSTM & ot
128 0. 816 0.575 0.814
256 1. 600 1. 070 0. 590

PEBEEET Pyramid-CLT Y PSO BEERIEPLAAR 25
I, 32 BEEE X CNN #2 FRZ  LSTM G 2= il e 5ot
Transformer Zi i5h 4 |2 BORIE B 01 S B AT S 808 &, 52
a5 RN 3 s, MERZEEECN 1 LSTM [R5k
A 3. LSTM [ ik BA T B N 64  Transformer 4 15 %% )2 %X
2 EEIIRECK 8 I AR B AR, TR R
WG 2% 2] R4 0.001, 2% 2] R B 4% 4 Warm-up
Scheduler, PSO TR KB IRECH 10,
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MRS, 2t 2L T Pyramid-CLT 4 i 15 45 8 A 150000 46
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Table 3 Evaluation results of hyperparameter selection for
the PSO selective optimization model based on Pyramid-CLT

SR ZHUH RMSE MAE R?
1 0.537 0. 442 0.985
L2 2 1. 841 1.289 0. 941
3 0.594 0. 487 0.982
1 0.594 0. 483 0.982
LSTM ka8 2 0. 549 0.453 0.984
3 0. 537 0. 442 0.985
64 0.537 0. 442 0.985
LSTM P&
- 128 0. 630 0.514 0.975
Li 5T
256 0.564 0. 450 0.975
1 0.578 0. 476 0.982
Transformer
) - 2 0.537 0. 442 0.985
LIy
3 0. 544 0. 451 0.982
) 8 0.537 0. 442 0.985
HER I8
16 0. 562 0. 454 0.983

F4 FRBEERERITNER

Table 4 Performance evaluation of different threshold models

PSR MSE=0.5 MSE=1 MSE=1.5 MSE=2 MSE=2.5

RMSE 0.613 0. 537 0.789 0. 839 0. 833

MAE 0. 465 0.442  0.554  0.592 0. 585
R 0.920  0.985 0.819  0.701 0.722
T CIRMSE MSE=0.5
. MAE 12
e

1.0

MSE=2.5 MSE=1.0

MSE=2 MSE=1.5

7 ANTR] B (R R A RE S B 2
Fig. 7 Model performance with different thresholds
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Fig. 8 Prediction results of inverse system model based on

CNN-LSTM-Attention
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F52mm PSO DL o K AR B30 i A T 1) A2 R 1 £ 7
YR AR, BRI PEAL 25 a3 5 Fn , 7R3N HRME
THBY Bt, RMSE 1 MAE ¥ £ 5 78 8 K K °F, R ik %
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Table 5 Performance evaluation of Pyramid-CLT model

e T { A 15 i
RMSE 1. 085 0.194 0. 537 1.073 1.597
MAE 0. 818 0. 167 0.503 1. 004 1. 566

R? 0.974 0.783 0. 837 0. 947 0. 958
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Fig. 9 Prediction results of Pyramid-CLT model
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A 11 AT, X F AN R S, 3 F CNN-LSTM-
Attention I35 [n] ZR SRR B BEAE A= LA R G HE 19 FL AL B
EAFES , 233 T Pyramid-CLT () PSO BeFRIEAL A4
RIPE— G LS e 23 B R AL AR & 5 B8 4
P DG JC B 2 g, TR 22 B BN RIS 3 B[]
A0 0 TR 235 SR 3 B A B AR ARG B, SR AT IR T3 ) R4
BRSO A Rk . SR, 52 PR T8 5 15 A8 A i
FERUIN LG sh R A i HE R e Pk DL it e 25 BN 2

UREIR B I EDD A T M RE RS A AN 2 (EXT IR R S
SN, Bl I IE) 8 A S FORS B B S e T
— A UFSE T AR Z B HE B4 RS B 13 [ 80 e ) 4 Ak
BRI A B
3.4 HBhsCIE

1) P[RSS 280 35 o 52 55

SHESUE L H B 3T CNN-LSTM-Attention Wi [n] R 4%



5511 40

A TR AT SN B 9 I — 000 A XU B M ] SR 167

R (5 A B AL T Pyramid-CLT 4 PSO 454k
PEACRITRL (1528 B ALEY ) (A S50 R 2 SR AR R 1
FEAEIREE XA B W EIAE AL (1A A+B ) A7 9 il 5K
B, BEXF A B JCTR AR EEE IO A 2 ALY
AT X B AR L FREAE R 1Y 4 )R G it 7 s AR
T2 TR AP T AL 7 RAE 45 PSO Bk YW1 4R
{8, %F ELIEM 25 SR 6 Fw

F6 MEEEERMEEIILIFNER
Table 6 Comparative evaluation results of the ablation

study on the collaborative model

%7 CNN-LSTM-Attention i RS SE3& % Lb i 45 R
Table 7 Comparative evaluation results of CNN-LSTM-

Attention ablation experiments

KRR RMSE MAE R?
CNN 0. 985 0. 685 0. 734
LSTM 1.341 0. 958 0. 697
CNN-LSTM 0.757 0. 540 0. 766
CNN-Attention 0. 897 0. 637 0.789
LSTM-Attention 0. 820 0.575 0.811
CNN-LSTM-Attention 0. 655 0.517 0. 980

R7R R RMSE MAE R? ¥#]TMIJ
B 8] /ms
A 0. 655 0.517 0. 980 4. 402
B 3.258 1.796 0.753 216. 135
A+B 0. 537 0. 442 0.985 16. 343

SERGAE A 5 B XU B B R A R 7 1 e L
FRT B B A A B, HAKT 5, )45
RMSE Hl MAE #& 51 [y Be AR R b 28 B ARG, [R] i R® b 25 48
Tt o B B U RIS () S-S5 U s R] 24 16. 343 ms , FRUS
fe AR A (ORGS0 A (14T s A2 S B
BRI EER LR A TR REOE TR AL AR FALAY B 1)°F
P T B 5] 216. 135 ms, P [RS8 f% 00 B ] R e ik 21>
HMVE B RS B AR shi 7 B S i P R
AN A, LLSEER R A B 0y, AR o] 42 il A 3R #R 23
FEANAIEIE WO P A= B A 2 5] Rk
IR . Tucker 251 38 53 4 P - T2 A48 M, A
1A BB RIS 200~ 300 ms, Hor AR [ 47 7B R 2 Hy
70~100 ms, R EIARAIETIEY T, S B b AL X —
RIS B A A BEAETRIN AN R b, b AT 4
FEIR M H AR E A <30 ms, BRI AN B85 0 3 R 4 3R 75
FARTF AMRLER K, A R = AR i e R, BRAIR R
Seafs W AR AR SS: . SCRE AR A XU B IR RS R
ST R AL K 16. 343 ms, X T 30 ms B3R, A
TR AE M B s T B 5 A R M2 70 ~ 100 ms A9 AR EE
Rk R T, R TR RS e A

RS SR T 3 F CNN-LSTM-Attention f9 33
] RGATE 5L T Pyramid-CLT B PSO &AL AL 1557
BIPREISN , P B M #FT, AN T o, 6 R SR T T
FLATLA AT 2 T PG FASE 70 ) S A PE R

2) BRAY L T S 5

RN BRAFAS A o 25 A LR B TR, 43 301 6 R A A
RUEATI AL SE S £FX) CNN-LSTM-Attention A5 43 51|
37 CNN, LSTM , CNN-LSTM , CNN-LSTM-Attention £ 7% 3§
X HEBGIE , 7R AR R BCE S b BOXT LI 25 SR A0 3% 7 T,

ST AE RN, M Y CNN-LSTM-Attention A5 75 iy
R> 24 0.980, #H % F CNN. LSTM. CNN-LSTM . CNN-
Attention FlI LSTM-Attention 23 %l #28 7+ T 25.05% .
28.88% .21.83% .24.21% #1 20. 84% ; RMSE Fll MAE 4}
S 0.655 Fil 0.517, 5 HAth 20 14 45 Lk, RMSE B# A% T
33.49% 51.17% . 13.50% . 26. 98% F1 20. 12% , MAE [%
KT 24. 62% 46. 09% 4. 37% .18. 84% F1 10. 09% ,

CNN e EEIURTRRFE W REIE TUAY , i LSTM 2
AT e A 5 LSTM A B2 S B M5 O 21, il A A
Refl s 2 A 4 e 9K, O Attention $2 41 & 1Y |
TXFEE BTG 2R 42 E N 8] 4 ; Attention 73 2 F1HL
X LSTM [y % kL, SR AL OCHERS (W) 20, @k B4 )7
G A FIINAL , b 7] 455 70 B8 6% A 2400 FH A A B8 o i £
B, %1, CNN . LSTM Hil Attention F5 3k ()t [R] 4 JF) 5k 25
PEm TRIRIMERE A H A A 4R A TN A R h 1
T EEAER AT,

£ XF Pyramid-CLT 4 %Y 43 %I # 37 CNN, LSTM ,
Transformer 4 it %% . CNN-LSTM , CNN-Transformer . LSTM-
Transformer , CNN-LSTM-Transformer , Pyramid-CLT A S
Xif FEBRAIE , 76 AH R A 4 L AR LU PP &5 A0 3R 8 PR,

% 8 Pyramid-CLT jHRLLIG T ELIEMN 4R
Table 8 Comparative evaluation results of Pyramid-CLT

ablation experiments

=RZR B RMSE MAE R?
CNN 1.326 0. 999 0. 964
LSTM 1.181 0.901 0.971
Transformer 2% %% 4.129 2. 868 0.768
CNN-LSTM 1.169 0. 881 0.972
CNN-Transformer 2.927 1.082 0. 963
LSTM-Transformer 5.298 3.533 0. 458
CNN-LSTM-Transformer 4. 898 3.274 0. 677
Pyramid-CLT 1.085 0.818 0.974
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0. 974 ,}1#{F CNN LSTM , Transformer , CNN-LSTM . CNN-
Transformer . LSTM-Transformer 1 CNN-LSTM-Transformer
SRR TET 1.03% . 0.33% . 21. 13% . 0.25% . 1. 14% .
112. 66% £ 30.50% , RMSE 1 MAE 43 J & 1. 085 £l
0.818, 5 CNN., LSTM . Transformer, CNN-LSTM , CNN-
Transformer , LSTM-Transformer 1 CNNLSTM-Transformer
AL, RMSE B&AK T 18.17% . 8. 11% . 73.73% . 7.22% .
62.9% . 79.5% Ml 77.85% ., MAE [ it T 18.13% .
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B 0, 5 bR 0, 2R £, AL bl
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*9 PSO EREREUEREEIT LIFNER
Table 9 Comparative evaluation results of the ablation

study on PSO fitness function

T8 N PR RMSE MAE R2
f=MSE 0. 593 0. 484 0. 984
f=MSE+SP 0. 602 0. 494 0.977
F=MSE+LP 0. 558 0. 456 0.979
f=MSE+SP+LP 0. 537 0. 442 0. 985

W, =F O E AR R TR S S B A
MSE #l MAE, feZ4fdi R* 35 %1 0. 985, A iii§2 T 1 v /L4
NHEA T G RIS AL ) B RV
3.5 AREBMFEXT 547

g TSRS 8RR B A SR W AT RO , E AR [ %
PatE b5 2 Fh e e T U SR AT X L S, AL
B0 IS ) A% 38 4 25 ) 2% ( back propagation neural network
BPNN) 7 FFa &AL ( support vector machine, SVM) f§ R
1412 M 2% (recurrent neural network , RNN) I B 1 25 %) 4%
(deep neural networks, DNN) 1 B [8] 25 FH ¥ £ ( temporal
convolutional network , TCN) DX & H §if 700 4T 5% 45 3, 5 oF
AUR 2 H 1 2 77 i E) 35 BRI 2% (temporal convolutional
network with residual self-attention, TCN-RSA ) [42] , — s
TCN (R RAFIE S ICAE 01 55 RSA 1 4 JR (st 2 A e )
FHES A R RA AR BE RS = ROTAT 5, B s As e M
T St R IS [R] e 4] S50 Y B2 B il B R 43 AT (neural
basis expansion analysis for interpretable time series, N-
BEATS) ' | bl aof i 2% 42 ¥ 4 41 2 0 245 43 Bsf ] )7 31
I3 g RSN =S Ryt O T8 G B eR B R AT T
PR AL A ;TimesNetW] P e — 2 e R Ak —
Hriki , AT 2D A U HE P JE 30 A a] RS S 1 B
Ip e B B s 5L T A Im] A A BRI 2% Y A 3R B ( deep
autoregressive recurrent networks, DeepAR) 151 et I AH
KIS kG2 ) R Rt

R AL AV RE , S B B[] 1 2 oA
K 5 P38 SLRAIESS & PAR 8 R BT 8 S 5L, 3T 1
RN 10 Fros AV 45 R AnEl 13 fow

10 REFMFEX b RRTHER

Table 10 Comparison of different prediction methods

ERFRE| RMSE MAE R?
BP 1.055 0.730 0.739
SVM 0.761 0. 580 0.927
RNN 0.925 0. 651 0. 742
DNN 1.029 0.728 0. 675
TCN 0. 804 0. 564 0. 742
TCN-RSA 0. 826 0. 590 0. 807
N-BEATS 0.712 0. 469 0. 878
TimesNet 0.819 0. 540 0. 844
DeepAR 0. 965 0. 673 0.777
Proposed 0. 537 0. 442 0. 985

SER A RARW] , LA MSE S 325 B3 R pR RO Rl
= LA AR & 5 H IR S LR . SP fe ik
THRRAFAN RS, T LP WGt A SE S B an 5

ARBE T3 AR A | 20 MU S N T X Bb Y T 4
PERETEY RMSE F1 MAE Y9/ AR B T, R A
ANIFFREE R R R, Hirb, BPNN SVM F1 RNN &b 3 i 5
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Fig. 13 Comparison of different prediction methods
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