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下肢外骨骼电机超调预测-优化双阶段补偿控制策略∗
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摘　 要:下肢外骨骼技术能够辅助增强人体力量,应用广泛。 然而,外骨骼电机因电磁惯性和机械负载导致的动态非线性,因超

调引发人机协同运动响应失配,增加生物力学损伤风险。 针对外骨骼电机在人体行走抬腿阶段的惯性超调问题,提出了一种融

合逆向系统模型预测与前向模型优化的双阶段协同超调量预测优化策略。 通过构建卷积神经网络-长短期记忆网络-注意力

机制(CNN-LSTM-Attention)的逆向系统模型,实时接收电机目标输出,有效捕捉多变量时间序列数据,快速生成外骨骼电机初

始输入指令;构建金字塔特征融合-卷积神经网络-双向长短期记忆网络-Transformer(Pyramid-CLT)的前向优化模型,采用门控

机制和金字塔形全连接层(Pyramid)实现多尺度特征整合,预测输出与目标输出的均方误差作为目标函数,运用粒子群优化算

法(PSO)对高均方误差的样本进行迭代优化,生成精确的电机控制指令,实现电机超调补偿控制,并通过下肢刚性外骨骼系统

采集电机实际运行数据进行实验验证。 结果表明,预测优化策略能够根据人体运动轨迹精准生成外骨骼电机输入指令,模型相

关指数(R2 )为 0. 985,均方根误差(RMSE)和平均绝对误差(MAE)分别为 0. 537 和 0. 442;与单一模型算法和其他预测算法对

比,通过实时动态预测并修正超调量,使电机输出紧密贴合人体运动轨迹,有效提升人机协同性,为下肢外骨骼的精准控制提供

了新的方法。
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Abstract:Lower
 

limb
 

exoskeleton
 

technology
 

can
 

assist
 

in
 

enhancing
 

human
 

strength
 

and
 

has
 

a
 

wide
 

range
 

of
 

applications.
 

However,
 

exoskeleton
 

motors
 

exhibit
 

dynamic
 

nonlinearity
 

due
 

to
 

electromagnetic
 

inertia
 

and
 

mechanical
 

loads,
 

leading
 

to
 

overshoot
 

that
 

causes
 

mismatches
 

in
 

human-machine
 

collaborative
 

motion
 

responses
 

and
 

increases
 

the
 

risk
 

of
 

biomechanical
 

injury.
 

To
 

address
 

the
 

inertial
 

overshoot
 

issue
 

in
 

exoskeleton
 

motors
 

during
 

the
 

leg-lifting
 

phase
 

of
 

human
 

walking,
 

a
 

two-stage
 

collaborative
 

overshoot
 

prediction
 

and
 

optimization
 

strategy
 

is
 

proposed,
 

integrating
 

inverse
 

system
 

model
 

prediction
 

with
 

forward
 

model
 

optimization.
 

By
 

constructing
 

a
 

reverse
 

system
 

model
 

based
 

on
 

a
 

CNN-LSTM-Attention
 

architecture,
 

the
 

system
 

receives
 

real-time
 

motor
 

target
 

outputs,
 

effectively
 

captures
 

multivariate
 

time-series
 

patterns,
 

and
 

rapidly
 

generates
 

the
 

initial
 

input
 

commands
 

for
 

the
 

exoskeleton
 

motor.
 

A
 

forward
 

optimization
 

model
 

based
 

on
 

a
 

pyramid
 

feature
 

fusion-CNN-bi-LSTM-Transformer
 

(Pyramid-CLT)
 

architecture
 

is
 

constructed.
 

The
 

model
 

employs
 

a
 

gating
 

mechanism
 

together
 

with
 

pyramid-shaped
 

fully
 

connected
 

layers
 

to
 

achieve
 

multi-scale
 

feature
 

integration.
 

The
 

mean
 

squared
 

error
 

between
 

the
 

predicted
 

output
 

and
 

the
 

target
 

output
 

serves
 

as
 

the
 

objective
 

function.
 

To
 

further
 

improve
 

the
 

prediction
 

accuracy,
 

a
 

particle
 

swarm
 

optimization
 

(PSO)
 

algorithm
 

is
 

applied
 

to
 

iteratively
 

refine
 

samples
 

with
 

high
 

mean
 

square
 

error,
 

enabling
 

the
 

generation
 

of
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precise
 

motor
 

control
 

commands
 

for
 

overshoot
 

compensation.
 

Experimental
 

that
 

the
 

prediction
 

optimization
 

strategy
 

can
 

precisely
 

generate
 

exoskeleton
 

motor
 

input
 

commands
 

based
 

on
 

human
 

movement
 

trajectories,
 

achieving
 

a
 

model
 

correlation
 

coefficient
 

(R2 )
 

of
 

0. 985,
 

root
 

mean
 

square
 

error
 

( RMSE)
 

of
 

0. 537,
 

and
 

mean
 

absolute
 

error
 

( MAE)
 

of
 

0. 442;
 

Compared
 

with
 

single-model
 

algorithms
 

and
 

other
 

prediction
 

algorithms,
 

the
 

proposed
 

method
 

achieves
 

real-time
 

dynamic
 

prediction
 

and
 

correction
 

of
 

overshoot,
 

enabling
 

motor
 

output
 

to
 

closely
 

align
 

with
 

human
 

movement
 

trajectories,
 

thereby
 

effectively
 

enhancing
 

human-machine
 

synergy
 

and
 

providing
 

a
 

new
 

method
 

for
 

precise
 

control
 

of
 

lower-limb
 

exoskeletons.
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0　 引　 　 言

　 　 近年来,外骨骼助力技术迅速发展,通过分散负重和

减少身体损伤,显著提升工人劳动效率,降低疲劳和体力

消耗,为职业健康提供强有力支持[1-5] 。 目前已开发出多

个下肢外骨骼机器人用于助力领域, 例如 Lopes[6] 、
Lokomat[7] 、Walktrainer[8] 和 Alex[9] 。 大多数外骨骼采用

穿戴式的工作方式[10] ,这就要求人体与外骨骼之间能够

紧密配合、自然交互。 然而在实际的日常活动中,由于电

机的二阶惯性[11] ,外骨骼系统的人机协同运动控制中存

在动态响应失配问题[12-13] ,为了追随人体运动速度,电机

运行速度往往会过快,其输出角度在跟踪人体真实运动

角度时会产生显著的幅值超调,这种非线性动态特性可

能引发人机交互力矩突变,造成生物力学损伤风险[14] 。
当电机运行速度减缓时,又可能与人体运动状态产生不

协调,引发运动冲突。
轨迹控制是实现下肢外骨骼人机协同的关键研究方

向。 现研究主要从 3 个方面着手:1)轨迹生成与优化,即
根据用户意图和环境条件,规划外骨骼运动路径,使其与

人体运动协调一致。 Kamali 等[15] 提出了一种基于动态

运动基元的膝关节外骨骼轨迹生成与阻抗控制方法,个
性化预测由坐到站的运动轨迹并提供有效辅助。 Sun
等[16] 提出了一种基于邻域场优化和反向动力学分析的

下肢外骨骼参考轨迹优化方法,旨在通过减少人体关节

力矩来降低行走时的能量消耗。 Huang 等[17] 提出了一种

基于运动学模型和人工鱼群算法的下肢外骨骼参考步态

轨迹优化方法,通过髋关节运动生成膝关节轨迹;2)步态

偏差矫正,通过减小外骨骼的实际运动轨迹与用户预期

或自然步态之间的差异,确保外骨骼实时适应用户步伐。
Zhang 等[10] 基于极端梯度提升(extreme

 

gradient
 

boosting,
 

XGboost)算法开发了一种步态偏差校正方法,通过建立

穿戴者步态与外骨骼轨迹之间的关系模型,基于身体特

征参数校正外骨骼参考轨迹。 Zhang 等[18] 针对预定义轨

迹适应性不足的问题提出了一种基于适应扩展卡尔曼滤

波的轨迹误差补偿方法;3)非线性动态控制,即通过先进

的控制算法处理外骨骼与人体交互中的动态变化,确保

运动轨迹的精确跟踪、柔顺性和能效优化。 Jenhani 等[19]

针对外骨骼非线性动态及外部扰动引起的控制不稳定问

题,提出了一种复合控制策略,通过集成线性状态反馈控

制器与非线性控制律,有效解决膝关节外骨骼的非线性

动力学难题。 Chen 等[20] 基于运动捕捉数据和腿部几何

约束,通过正弦函数拟合髋关节和膝关节的参考轨迹,实
时估计系统压力中心位置,动态调整参考轨迹以应对内

外扰动,确保系统平衡。 Perez-San 等[21] 提出了一种用于

下肢康复外骨骼的混合位置-力控制器,基于用户运动意

图,通过自适应强化约束控制实现人机协同,旨在安全地

辅助患者进行步态康复。
尽管上述方法在轨迹生成与优化、步态偏差校正及

非线性动态控制等方面为高度耦合的人机外骨骼系统带

来了显著进展,但是人与机械结构间的相互影响仍然存

在,外骨骼电机受电磁惯性和机械负载影响,输入与输出

构成复杂的动态非线性系统[22] ,启动、停止和加速时存

在时滞或非线性,产生超调、振荡或延迟上升,导致动作

与人体意图不同步,影响人机友好协同。 传统的物理模

型,如微分方程、传递函数等对电机建模,需预先定义转

动惯量 J、阻尼系数 B 等电机动力学参数[23-24] ,但这些参

数在实际中随负载、温度、机械磨损动态变化导致模型失

配。 且传统模型难以量化电机超调量与时序震荡衰减过

程,非线性动态建模能力不足[25] ,降低了系统效率和穿

戴舒适性,限制了人机协作的整体性能。
因此为了解决外骨骼控制中人机速度矛盾导致人体

期望与电机输出适配难问题,有必要在人体期望运动轨

迹与电机实际输出轨迹之间构建一种有效的控制策略。
该策略需依据人体的运动特性和电机的输出特性,设定

合理的电机期望值,实现较高的人机匹配度。 考虑到现

有方法多忽略电机动态特性对系统性能的影响以及传统

建模手段难以实现对外骨骼电机非线性和时变动态的准

确描述,基于深度学习的方法可以从海量运行数据中挖

掘出外骨骼电机运行时输入量和输出量的特征信息,通
过端到端学习与动态补偿机制,建立电机输入输出之间

映射关系,确保外骨骼的输出轨迹与人体期望轨迹相匹

配,从而提高外骨骼的柔顺性。
针对外骨骼电机动态特性导致的惯性超调问题及其

对人机协同运动的影响,以人体行走模式中抬腿阶段髋

关节为研究对象,提出了一种融合逆向系统模型预测与
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前向模型优化的双阶段协同超调量预测优化策略,兼顾

动态系统指令生成的实时性与精度。 具体而言,在第 1
阶段,构建了基于卷积神经网络-长短期记忆网络-注意

力 机 制 ( convolutional
 

neural
 

network-long
 

short
 

term
 

memory-attention,
 

CNN-LSTM-Attention ) 的逆向系统模

型,捕捉多变量时间序列数据中的时间和空间依赖关系,
通过实时接收人体运动轨迹作为电机目标输出,预测生

成电机初始输入指令。 在第 2 阶段,提出基于金字塔特

征融 合 - 卷 积 神 经 网 络 - 双 向 长 短 期 记 忆 网 络 -
Transformer ( pyramid-convolutional

 

neural
 

network-bi-
directional

 

long
 

short
 

term
 

memory-transformer,
 

Pyramid-
CLT)的前向优化模型,对电机初始输入指令进一步优

化。 通过各模块融合预测生成电机输出轨迹,若电机预

测输出与人体运动轨迹的误差超过设定阈值,则采用粒

子群( particle
 

swarm
 

optimization,
 

PSO)算法迭代优化生

成更精确的电机输入指令。 该策略通过逆向建模与前向

优化的协同,融合模型预测与进化算法的优势,预测外骨

骼电机超调量,实时优化电机输入指令,确保外骨骼电机

输出紧密贴合人体运动轨迹,在保持实时性的基础上显

著降低稳态误差,为人机协同运动中控制问题提供了新

解决方案。

1　 数据采集及处理

　 　 数 据 采 集 包 括 表 面 肌 电 信 号 ( surface
 

electromyography,sEMG)采集和外骨骼实际运动轨迹数

据采集,其中 sEMG 用于生成人体运动轨迹,以产生电机

输入指令驱动外骨骼运动。 同时,采集电机输出的相关

数据集,并将外骨骼电机输入指令和输出轨迹数据集作

为提出模型的训练和测试数据集。
1. 1　 人体运动轨迹的生成

　 　 为实现下肢外骨骼与穿戴者的高度协同,外骨骼系

统需基于人机交互信息准确感知穿戴者的运动意图,并
对人体期望步态轨迹进行精确跟踪[26-29] 。 其中 sEMG 能

够反映神经肌肉活动,具有无创性采集的特点,且信号产

生时间比实际动作提前 30 ~ 150
 

ms[30-31] ,适用于下肢运

动轨迹预测,并在特定场景下展现高可靠性。 Liu 等[32]

提出了一种协同步态预测模型使用 sEMG 信号预测个性

化步态轨迹,预测轨迹与实际膝关节角度的相关系数高

于 0. 9, 表明高一致性; Koo 等[33] 提出传感器无关的

LSTM 模型,使用 sEMG 数据预测单自由度下肢角度轨

迹,克服硬件差异实现跨设备预测,平均 MAE 为 2. 8°;
Qin 等[34] 基于肌肉协同理论和状态空间模型的方法提取

sEMG 的低维协同特征并结合无迹卡尔曼滤波,可实现

R2 >0. 92,RMSE<5°的高精度预测。 相较多源数据,单一

sEMG 方案硬件简单、成本低、易穿戴,且无需复杂数据

同步和校准,降低系统复杂性和功耗,在便携性和实用性

优先的场景下, sEMG 方法更具优势。 因此采用英国

Biometrics 公司生产的无线表面肌电信号传感器 LE230
和无线双轴测角计 W150, 采集行走时的人体下肢

sEMG,如图 1 所示。 利用 Qin 等[34] 提出的基于肌肉协同

理论和状态空间模型的下肢连续角度估计方法预测得到

人体行走髋关节步态轨迹,如图 2 所示。

图 1　 sEMG 采集

Fig. 1　 sEMG
 

collection

图 2　 基于 sEMG 的人体行走时髋关节角度预测

Fig. 2　 Prediction
 

of
 

hip
 

joint
 

angle
 

during
 

human
 

walking
 

based
 

on
 

sEMG

1. 2　 外骨骼数据采集及处理

　 　 由于外骨骼助力主要在人体抬腿阶段克服重力做

功,因此本研究选择人体行走模式中抬腿阶段髋关节为

研究对象,以 100
 

ms 为周期将基于 sEMG 预测得到的人

体髋关节运动轨迹采样为电机输入指令发送至控制器,
由驱动器驱动髋关节电机运动。 同时无线姿态传感器以

100
 

Hz 频率实时采集髋关节的实际角度和速度,得到电

机输出轨迹。 由于步进电机固有的物理特性,电机输出

存在显著超调,所以将此电机输入指令作为输入指令最

大值。 逐步减小输入指令,直至电机输出值低于人体真

实角度,确定最小输入指令。 最后通过线性插值生成输

入指令集合 X,驱动电机得到输出集合 Y。
电机输入指令数据集 X 包含角度集合和速度集合。

具体地,设时间步为 t i(i = 1,2,…,n),每个时间步对应一

个角度值 θm-inputi
和速度值 ωm-inputi

,则数据集 X 可表示为:
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X = {(θm -inputi
,ωm -inputi

) i = 1,2,…,n} (1)
其 中, θm -inputi

∈ Θm -input ,Θm -input 为 角 度 集 合;
ωm -inputi

∈ Ωm -input ,Ωm -input 为速度集合;t i = t0 + i·Δt,Δt =
100

 

ms。
采集 1

 

864 组样本数据,包括电机输入数据和输出

数据。 为提升模型预测的准确性,对样本数据采用四分

位距(interquartile
 

range,
 

IQR) 法进行异常值处理,确保

在保留数据集主要统计特性的基础上有效去除不合理

值;采用首尾数据部分增强实施数据增强,增加样本多样

性,同时保留数据的物理意义和分布特性,避免过度干扰

原始数据结构;采用 Min-Max 标准化方法进行归一化处

理,统一量纲,提高模型性能。

2　 预测优化策略

2. 1　 整体框架

　 　 文章构建融合逆向系统模型预测与前向模型优化的

双阶段协同超调量预测优化策略,如图 3 所示。 利用肌

电信号传感器采集人体 sEMG 信号,经过处理后获得人

体运动轨迹,即电机目标输出 Θ target ,将该轨迹输入双阶

段模型进行处理,预测得到电机控制指令 Θm-input ,从而驱

动下肢外骨骼运动。

图 3　 融合逆向系统模型预测与前向模型优化的双阶段协同超调量预测优化策略整体架构

Fig. 3　 Overall
 

architecture
 

of
 

a
 

two-stage
 

collaborative
 

overshoot
 

prediction
 

optimization
 

strategy
 

combining
 

reverse
 

system
 

model
 

prediction
 

and
 

forward
 

model
 

optimization

　 　 在第 1 阶段,系统以 sEMG 处理预测后的人体运动

轨迹 Θ target 为基准,构建电机输出-输入指令映射关系。
通过建立基于 CNN-LSTM-Attention 的逆向系统模型,实
时接收电机目标轨迹 Θ target ,并将其作为模型输入,融合

CNN、LSTM 和 Attention 模块,有效捕捉多变量时间序列

数据中的空间和时间依赖关系,生成电机初始输入指令

G initial 。 在第 2 阶段, 将初始输入指令 G initial 输入到

Pyramid-CLT 前向模型,融合 CNN、BiLSTM 和 Transformer
编码器,通过门控机制和 Pyramid 进行特征整合,最终利

用线性回归头输出预测结果生成预测输出 Θpre ,并计算

其与目标输出 Θ target 的均方误差 ( mean
 

square
 

error,
MSE)。 通过设定 MSE 阈值,筛选出误差较高的电机初

始输入指令,采用 PSO 算法迭代优化,最小化预测输出

Θpre 与目标输出 Θ target 之间的误差,从而优化电机初始输

入指令,生成更精确的控制指令 Θm-input 。
第 1 阶段通过逆向模型单次推理生成指令,具有计

算效率高、响应快的优点,但因逆模型存在多映射特性及

误差开环传递问题,预测精度受限。 在第 2 阶段,引入模

型优化机制以进一步提升指令精度。 该阶段基于前一阶

段所提供的初始指令,有效缩小了 PSO 算法的搜索空

间,从而大幅节约了优化时间。 同时,通过选择性优化策

略,避免了对逆模型表现良好样本的过度优化,既减少了

不必要的计算开销,也抑制了因优化过程引入额外噪声

的风险。 该策略通过逆向系统模型与前向模型的协同作
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用,最终在计算效率与控制精度之间取得了良好平衡。
系统不仅保持了优异的实时性,抑制了外骨骼电机的稳

态误差与超调,提高升了外骨骼的响应性能与整体稳

定性。
2. 2　 基于 CNN-LSTM-Attention 网络的逆向系统模型

　 　 针对外骨骼电机动态响应中的超调现象对人体运动

安全构成的潜在风险,在策略第 1 阶段提出基于 CNN-
LSTM-Attention 网络的逆向系统模型,其网络结构如图 4
所示。

图 4　 CNN-LSTM-Attention 网络结构

Fig. 4　 CNN-LSTM-Attention
 

network
 

architecture

通过采集穿戴者下肢运动学数据和外骨骼电机的动

态响应数据,对历史运行数据进行分析,建立外骨骼电机

输出和电机输入指令之间的动态逆向映射关系模型。
逆向系统模型的核心是构建从电机目标输出到电机

输入指令的映射函数,利用外骨骼的动态特性驱动电机

实现目标输出,数学上可表示为:
Θm -input = f -1(Θ target ;α) (2)
其中,Θm-input ∈RT 是电机输入指令,Θ target ∈RT 是电

机目标输出,即人体运动轨迹, α 是逆模型的参数。
由于外骨骼控制对实时性的严格要求,模型采用逐

步预测方法,每个时间步包含 10 个值。 对采集到的人体

行走模式外骨骼电机输入和输出序列进行缺失值和归一

化处理后,将电机输出序列输入 CNN 层提取有效特征。
CNN 模块包含两层卷积操作,每层后接 ReLU 激活函数

引入非线性,并通过最大池化将序列长度减半,以降低计

算复杂度和增强特征鲁棒性。 随后,将 CNN 提取的特征

输入 LSTM 层,捕捉输入数据的时序依赖性和序列信息。
注意力机制通过两层全连接网络计算注意力分数,并经

softmax 函数归一化为权重,突出对预测任务关键的时间

步,提升模型性能。 最后,通过全连接层将注意力机制的

输出映射至目标值,即外骨骼电机的初始输入指令。
2. 3　 基于 Pyramid-CLT 的 PSO 选择性优化模型

　 　 在模型处理第 2 阶段,提出了一种基于 Pyramid-CLT
的 PSO 选择性优化模型,与第 1 阶段协同配合以提升外

骨骼电机控制指令的精度。 模型首先利用逆向系统模型

生成初始输入指令作为初始值,将其输入 Pyramid-CLT

网络,计算电机输出 Θm-output 与目标输出 Θ target 的 MSE。
若 MSE 低于阈值 1,直接采用初始输入指令;若 MSE 超

过 1 时,启动 PSO 优化算法,最小化电机输出与目标输

出之间的误差,迭代优化输入指令序列。 该方法结合

Pyramid-CLT 的特征融合能力与 PSO 的全局搜索优势,
能够动态优化输入指令,从而增强外骨骼系统与人体运

动轨迹的适配能力。
1)

 

Pyramid-CLT 模型

Pyramid-CLT 模型是一种混合神经网络,旨在根据输

入的角度和速度序列预测外骨骼输出。 该模型集成了

CNN、BiLSTM、Transformer 编码器、金字塔融合模块和特

征融合门控机制,高效捕捉序列数据中的空间和时间依

赖关系,其网络结构如图 5 所示。

图 5　 Pyramid-CLT 网络结构

Fig. 5　 Pyramid-CLT
 

network
 

architecture

(1)局部时序特征提取

在 Pyramid-CLT 模型中,CNN 用于提取输入序列的

局部特征,捕捉时间维度上的局部相关性;BiLSTM 接收

CNN 输出,结合双向信息流和长短期记忆机制,捕获长

短期依赖关系。 通过多阶段架构实现特征提取与序列建

模,高效处理外骨骼电机的输入角度和速度。
(2)全局时空特征提取

Transformer 作为一种高效的时间序列预测工具[35] ,
能够有效捕捉时序数据中的复杂依赖关系与多尺度特

征。 其中 Transformer 编码器在提取序列特征、捕捉输入

序列中各元素之间的全局依赖关系中起关键作用。 采用

了两层 Transformer 编码器, 通过多头自注意力机制

(multi-head
 

attention,
 

MHA ) 和 前 馈 神 经 网 络 ( feed-
forward

 

neural
 

network,
 

FFN)对时间步之间的复杂关系进

行建模,实现高精度的时间序列预测。
(3)特征增强表达

Pyramid 是一种用于多尺度特征融合的结构,通过两

层全连接网络进行维度扩展和压缩,对 BiLSTM 提取的

序列特征进行非线性变换,为后续的特征融合提供高质

量的补充特征。
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(4)特征融合

采用门控机制动态融合 Transformer 和 Pyramid 提取

的特征,通过自适应权重分配,突出对预测任务更重要的

特征。 假设输入特征为 X1,X2,…,Xn, 融合门机制可以

表示为:
G i = sigmoid(Wg·[X1,X2,…,Xn] + bg) (3)
其中, Wg 为 可 学 习 权 重 矩 阵,bg 为 偏 置 项,

[X1,X2,…,Xn] 表示特征拼接。
2)PSO 选择性优化

PSO 是一种基于群体智能的优化算法[36] ,在第 2 阶

段中用于优化由逆向系统模型生成的初始输入指令。 逆

向模型根据目标轨迹生成初始的电机控制指令,但这些

初始预测指令可能与真实输入存在较大误差,导致前向

模型的预测输出与目标输出之间的差值较大。 PSO 以初

始指令为起点,定义搜索空间为初始猜测附近的角度范

围。 通过最小化目标函数,迭代搜索最优输入序列,使预

测输出与目标轨迹的 MSE 尽可能小,同时考虑输入的平

滑性和与初始指令的偏差。
PSO 并非对所有样本都进行优化,而是通过设定阈

值 MSE = 1 筛选需要优化的样本:如果初始指令的 MSE
已经足够低(MSE<1),则跳过 PSO 优化直接使用初始预

测指令,减少计算开销。 对于 MSE 较高的样本,PSO 通

过迭代搜索优化输入指令,显著降低预测输出与目标输

出的误差。 这种选择性优化策略平衡了计算效率和优化

效果,仅对误差较高的样本进行 PSO 优化。 其实现步

骤为:
(1)初始化参数和粒子群,设置粒子群在初始指令

附近均匀分布,范围为:
[max( lb,G initial - 0. 075·(ub - lb)),

min( lb,G initial + 0. 075·(ub - lb))] (4)
其中, lb和 ub为输入变量每个维度的上下界,速度 v

初始化为 0,缩小搜索空间,提高效率。
(2)迭代更新粒子位置和速度,表达式为式( 5) 和

(6),逐步逼近目标函数的最优解,即:
x = x + v,　 x ∈ ( lb,ub) (5)
v = ω·v + ϕp·r1·(pbestx - x) + ϕg·r2·(gbestx - x)

(6)
其中, ω 为动态惯性矩阵,ϕp 为认知因子,ϕg 为社交

因子。 r1 和 r2 为随机矩阵,pbestx 为个人最佳位置矩阵,
gbestx 为全局最佳位置矩阵。

(3) 评估适应度函数,计算粒子适应度函数 f 为

MSE、平滑性惩罚( smooth
 

penalty,SP)和正则化惩罚( L2
 

penalty,LP)的和,具体表达式如式(7)所示。
f = MSE + SP + LP (7)
其中 MSE 表达式为:

MSE = 1
N ∑(Θpre - Θ target ) (8)

式中:Θpre 为预测输出;Θ target 为目标输出。
SP 鼓励输入序列在时间上平滑,防止优化输入出现

剧烈波动,其表达式为:

SP = ∑
N-2

i = 0
(xseq[ i + 1] - xseq[ i]) 2·w i·

r
100

(9)

式中: xseq 为输出序列;w i 为平滑性权重;r 为输入角度

范围。
LP 防止优化输入偏离初始猜测过远,其表达式为:

LP = ∑(xseq - G initial )
2·0. 2 (10)

PSO 的目标是通过优化一组输入,使模型输出尽可

能接近目标序列。 MSE 直接衡量了预测输出与目标输出

的误差,是优化任务的核心目标。 为避免输入序列剧烈

变化并确保优化结果不过分偏离初始猜测,适应度函数

引入了 SP 和 LP。 由于第 1 阶段逆模型生成的电机初始

输入指令已较为接近真实解,当前适应度函数设计简单

而有效,能够使 PSO 快速收敛到目标解。
(4)根据当前的目标函数值更新个人最佳和全局

最佳,引导粒子朝更优解移动,确保 PSO 始终追踪最

优解。
2. 4　 模型评价指标

　 　 将人体运动轨迹作为电机目标输出,预测电机最优

输入指令,这一过程属于回归任务,选择均方根误差( root
 

mean
 

square
 

error,RMSE)、相关指数(R2 ) 和平均绝对误

差(mean
 

absolute
 

error,MAE)作为评价指标,以量化预测

角度与目标角度的偏差。
RMSE 用于衡量预测值和实际值之间的平均误差,

其取值范围为(0,+∞ ),数值越靠近 0 表示模型性能越

好,表达式为:

RMSE = 1
n ∑

n

i = 1
(y i - ŷi)

2 (11)

式中: n 为样本个数;y i 为真实值;ŷi 为预测值。
MAE 是预测值与实际值差的绝对值的平均值,其取

值范围为(0,+∞ ),数值越靠近 0 表示预测模型性能越

好,表达式为:

MAE = 1
n ∑

n

i = 1
y i - ŷi (12)

R2 表示模型解释的因变量变异占总变异的比例,反
映了模型预测值与实际值之间的拟合程度,其取值范围

为( -1,1),数值越大表示模型拟合程度越好,表达式为:

R2 = 1 -
∑

n

i = 1
(y i - ŷi)

2

∑
n

i = 1
(y i - 􀭰y i)

2
(13)
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3　 实验验证

3. 1　 实验平台

　 　 实验平台由上位机数据处理与模型训练平台及下肢

刚性外骨骼系统构成。
基于 Pytorch2. 6. 0+cuda12. 4 搭建上位机数据处理

与模型训练平台,系统为 Windows11,GPU 为 RTX
 

4090。
基于人体自由度分析[37-39] ,外骨骼下肢简化为两个

自由度,因踝关节在运动过程中动作幅度较小,设计为被

动式刚性结构满足实验需求,并在下肢外骨骼周围设计

跟随式架构以防穿戴者摔倒,如图 6 所示。

图 6　 下肢外骨骼系统

Fig. 6　 Lower
 

limb
 

exoskeleton
 

system

采用肌电信号传感器获取人体下肢 sEMG,得到人体

运动轨迹;采用无线姿态传感器获取外骨骼运动的角度、
角速度等数据,得到外骨骼输出轨迹;通过旋转编码器获

取驱动电机的旋转圈数、角度等数据。 所用传感器名称

及型号如表 1 所示。

表 1　 传感器名称及型号

Table
 

1　 Sensor
 

name
 

and
 

model

传感器名称 传感器型号

肌电信号传感器 Biometrics
 

LE230

无线姿态传感器 LPMS-B2

光电旋转编码器 OMRON
 

E6B2-CWZ6C

　 　 为满足下肢外骨骼系统对控制精度和通信效率的

需求,选用 STM32 系列 STM32F103ZET6 作为控制器,
其性能能够有效支持系统的实时控制与数据交互要

求;基于人体行走过程中髋关节以矢状面屈伸运动为

主的特性,采用步进电机 57CME23 搭配 CL57 数字式

闭环步进驱动器作为驱动单元,实现髋关节屈伸运动

的精确控制。

3. 2　 模型参数设置

　 　 采集 1
 

864 个样本,包含电机输入指令样本和电机输

出样本,将其按照 8 ∶ 2 随机将其划分为训练集和测试集。
选择 CNN-LSTM-Attention 模型参数时, 主要针对

CNN 卷积层、LSTM 隐藏层和隐藏单元进行参数设置,为
获取更有效的模型参数,测试不同超参数的模型性能,实
验结果如表 2 所示。 当卷积层层数为 2,LSTM 隐藏层数

为 2,LSTM 隐藏单元数为 64 时,模型达到最佳性能。 同

时设置初始学习率为 0. 001,正则化参数为 0. 000 1,损失

函数为 MSE,优化函数为 Adam。

表 2　 基于 CNN-LSTM-Attention 的逆向系统模型

超参数选取评价结果

Table
 

2　 Evaluation
 

results
 

of
 

hyperparameter
 

selection
 

for
 

the
 

inverse
 

system
 

model
 

based
 

on
 

CNN-LSTM-Attention

参数名称 参数值 RMSE MAE R2

卷积层

LSTM 隐藏层数

LSTM 隐藏单元

1 0. 846 0. 601 0. 793

2 0. 655 0. 517 0. 980

3 0. 830 0. 584 0. 812

1 0. 805 0. 555 0. 814

2 0. 655 0. 517 0. 980

3 0. 805 0. 554 0. 824

32 0. 820 0. 567 0. 825

64 0. 655 0. 517 0. 980

128 0. 816 0. 575 0. 814

256 1. 600 1. 070 0. 590

　 　 选择基于 Pyramid-CLT 的 PSO 选择性优化模型参数

时,主要针对 CNN 卷积层、LSTM 隐藏层和隐藏单元、
Transformer 编码器层数和注意力头数进行参数设置,实
验结果如表 3 所示。 当卷积层层数为 1、LSTM 隐藏层数

为 3、LSTM 隐藏单元数为 64、 Transformer 编码器层数

为 2、注意力头数为 8 时,模型达到最佳性能。 同时设置

初始 学 习 率 为 0. 001, 学 习 率 调 度 器 为 Warm-up
 

Scheduler,PSO 粒子数和最大迭代次数为 10。
3. 3　 模型性能验证及分析

　 　 1)选择性优化阈值选取实验

在构建的融合逆向系统模型预测与前向模型优化的

双阶段协同超调量预测优化策略中,当第 1 阶段逆向系

统模型给出电机初始指令后,是否启动第 2 阶段的 PSO
优化算法,是由基于 Pyramid-CLT 的前向模型的预测输

出和目标输出之间的 MSE 决定的,所以 MSE 的阈值设

置至关重要。 设置 MSE 阈值为 0. 5、1、1. 5、2 和 2. 5,分
别进行模型测试,评价结果如表 4 所示,在相同的数据集

上的 RMSE、MAE 和 R2 的变化情况如图 7 所示。
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表 3　 基于 Pyramid-CLT 的 PSO 选择性优化模型

超参数选取评价结果

Table
 

3　 Evaluation
 

results
 

of
 

hyperparameter
 

selection
 

for
 

the
 

PSO
 

selective
 

optimization
 

model
 

based
 

on
 

Pyramid-CLT

参数名称 参数值 RMSE MAE R2

卷积层

LSTM 隐藏

层数

LSTM 隐藏

单元

Transformer
编码器层数

注意力头数

1 0. 537 0. 442 0. 985

2 1. 841 1. 289 0. 941

3 0. 594 0. 487 0. 982

1 0. 594 0. 483 0. 982

2 0. 549 0. 453 0. 984

3 0. 537 0. 442 0. 985

64 0. 537 0. 442 0. 985

128 0. 630 0. 514 0. 975

256 0. 564 0. 450 0. 975

1 0. 578 0. 476 0. 982

2 0. 537 0. 442 0. 985

3 0. 544 0. 451 0. 982

8 0. 537 0. 442 0. 985

16 0. 562 0. 454 0. 983

表 4　 不同阈值模型性能评价结果

Table
 

4　 Performance
 

evaluation
 

of
 

different
 

threshold
 

models

评价结果 MSE= 0. 5 MSE= 1 MSE= 1. 5 MSE= 2 MSE= 2. 5

RMSE 0. 613 0. 537 0. 789 0. 839 0. 833

MAE 0. 465 0. 442 0. 554 0. 592 0. 585

R2 0. 920 0. 985 0. 819 0. 701 0. 722

图 7　 不同阈值模型性能实验结果

Fig. 7　 Model
 

performance
 

with
 

different
 

thresholds

　 　 由图 7 可知,选择性优化模型的启动阈值最佳值

为 1。 阈值过小会导致更多样本(包括误差较小的样本)
触发 PSO 算法,可能引发过拟合,且 PSO 在处理大量样

本时易陷入局部最优或迭代效率下降,群体智能难以有

效收敛。 阈值过大时,仅误差较大的样本触发优化,未优

化的样本可能导致累积误差。 适中阈值能平衡泛化能力

与关键误差修正,提升模型整体性能。
2)基于 CNN-LSTM-Attention 的逆向系统模型性能验

证实验

将样本数据输入协同模型的第一阶段基于 CNN-
LSTM-Attention 的逆向系统模型进行训练和测试。 随机

选取 200 个样本的模型预测结果如图 8 所示。

图 8　 基于 CNN-LSTM-Attention 的逆向系统模型预测结果

Fig. 8　 Prediction
 

results
 

of
 

inverse
 

system
 

model
 

based
 

on
 

CNN-LSTM-Attention

由图 8 可以直观看出,基于 CNN-LSTM-Attention 的

逆向系统模型预测得到的电机初始输入指令与实际电机

输入指令之间高度一致,预测精度高。 这一结果充分验

证了该模型的优异性能,为后续第 2 阶段的优化调整提

供了精准可靠的初始值,并为整个预测优化策略的有效

性奠定了坚实基础。
3)基于 Pyramid-CLT 的前向模型性能验证实验

第 2 阶段中基于 Pyramid-CLT 的前向模型接收到电

机初始输入指令后预测电机输出,预测结果的准确性直

接影响 PSO 优化效果。 将样本数据输入前向模型进行

训练和测试,模型评估结果如表 5 所示。 在整个抬腿上

升阶段, RMSE 和 MAE 均保持在较低水平, R2 达到

0. 974,表明模型性能优异。 各时间步的 RMSE、MAE 和

R2 同样显示出前向模型的出色性能,为 PSO 优化的有效

性提供了坚实的基础。

表 5　 Pyramid-CLT 模型性能评价结果

Table
 

5　 Performance
 

evaluation
 

of
 

Pyramid-CLT
 

model

评价结果 T t1 t2 t3 t4

RMSE 1. 085 0. 194 0. 537 1. 073 1. 597

MAE 0. 818 0. 167 0. 503 1. 004 1. 566

R2 0. 974 0. 783 0. 837 0. 947 0. 958
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　 　 基于 Pyramid-CLT 的前向模型的模型预测结果如

图 9 所示,每个时间步 t i 的模型预测结果如图 10 所示。
可以看出,对于每个时间步,基于 Pyramid-CLT 的前向模

型预测得到的电机输出都接近于电机真实输出,预测精

度高,说明该模型性能优秀,为第 2 阶段的 PSO 迭代优

化提供了必要条件。

图 9　 Pyramid-CLT 模型预测结果

Fig. 9　 Prediction
 

results
 

of
 

Pyramid-CLT
 

model

图 10　 单时间步 Pyramid-CLT 模型预测结果

Fig. 10　 Prediction
 

of
 

Pyramid-CLT
 

model
 

in
 

a
 

single
 

time
 

step

4)双阶段协同模型性能验证实验

将采集到的样本输入到逆向系统模型中,生成电机

初始输入指令。 随后,将该指令输入基于 Pyramid-CLT
的前向模型,得到电机预测输出,并计算预测输出与电机

目标输出之间的 MSE。 若 MSE 超过阈值,采用 PSO 进行

优化。 双阶段协同模型在随机选取的 200 个样本上每个

时间步的预测结果如图 11 所示,PSO 收敛曲线如图 12
所示。

图 11　 整体模型单时间步预测结果

Fig. 11　 Prediction
 

of
 

the
 

overall
 

model
 

in
 

a
 

single
 

time
 

step

图 12　 PSO 算法迭代收敛曲线

Fig. 12　 Convergence
 

curve
 

of
 

PSO
 

algorithm
 

iterations

由图 11 可知,对于每个时间步,基于 CNN-LSTM-
Attention 的逆向系统模型能够生成较为精准的电机初始

输入指令。 经过基于 Pyramid-CLT 的 PSO 选择性优化模

型进一步精化后,最终得到的电机输入指令与真实指令

的匹配度显著提高,误差明显减小。 特别是后 3 个时间

步的预测结果表现出更高的精度,充分验证了逆向系统

模型与优化模型的有效性。 然而,受限于髋关节变化幅

度较小、电机启动初期的非稳定性以及前后步信息不足

的影响,首个时间步的预测性能略有不足,但对整体系统

影响较小。 随着时间序列的延长,预测精度显著提升,进
一步证实了本研究提出的双阶段协同超调量预测优化模

型的有效性。
3. 4　 消融实验

　 　 1)协同模型消融实验

为验证提出的基于 CNN-LSTM-Attention 的逆向系统
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模型(设为 A 模型)和基于 Pyramid-CLT 的 PSO 选择性

优化模型(设为 B 模型)的有效性和必要性,采用相同的

样本数据集,对双阶段协同模型(设为 A+B)进行消融实

验。 针对 A 模型,无需其他操作,直接预测得到电机的输

入指令;针对 B 模型,基于样本数据的全局统计、历史优

化结果聚类和拉丁超立方采样[40] 给出 PSO 算法的初始

值,对比评价结果如表 6 所示。

表 6　 协同模型消融实验对比评价结果

Table
 

6　 Comparative
 

evaluation
 

results
 

of
 

the
 

ablation
 

study
 

on
 

the
 

collaborative
 

model

算法模型 RMSE MAE R2 平均预测

时间 / ms

A 0. 655 0. 517 0. 980 4. 402

B 3. 258 1. 796 0. 753 216. 135

A+B 0. 537 0. 442 0. 985 16. 343

　 　 实验结果表明,提出的双阶段协同模型在性能上显

著优于单阶段模型 A 和 B。 具体而言, 协同模型的

RMSE 和 MAE 较单阶段模型显著降低,同时 R2 显著提

升。 双阶段协同模型的平均预测时间为 16. 343
 

ms,虽略

高于模型 A,但其预测精度更高,且预测时间仍满足实时

控制的要求,综合性能优于模型 A。 相较于模型 B 的平

均预测时间 216. 135
 

ms,协同模型的预测时间大幅减少。
外骨骼系统在辅助人体运动时,需要实时解读用户意图

并生成电机指令,以实现同步助力。 任何控制延迟都会

导致人机不同步,从而放大用户的生理负担,甚至引发跌

倒风险。 Tucker 等[41] 通过生理-工程交叉分析指出,人
体总运动循环约为 200 ~ 300

 

ms,其中人体固有延迟约为

70 ~ 100
 

ms。 为实现有效的前馈助力,外骨骼必须在这一

“前端”窗口介入,提供预测性补偿。 为此,他们将控制

延迟补偿目标设定为<30 ms,即外骨骼的整体延迟需显

著低于人体延迟水平,否则将产生“滞后反馈”,降低系

统透明度和用户体验。 文章提出的双阶段协同模型,其
平均预测时间仅为 16. 343

 

ms,远低于 30
 

ms 要求,从而

确保在外骨骼控制链路中有效补偿 70 ~ 100
 

ms 的人体延

迟,避免滞后干扰,并提升整体同步性和安全性。
上述结果充分验证了基于 CNN-LSTM-Attention 的逆

向系统模型与基于 Pyramid-CLT 的 PSO 选择性优化模型

的协同效应,两者互为补充,不可或缺,共同显著提升了

电机输入指令预测的精度和模型的整体性能。
2)模型组件消融实验

为深入理解模型中各个组件的贡献,分别对两个模

型进行消融实验。 针对 CNN-LSTM-Attention 模型分别建

立 CNN、LSTM、CNN-LSTM、CNN-LSTM-Attention 模型来

对比验证,在相同数据集上的对比评价结果如表 7 所示。

表 7　 CNN-LSTM-Attention 消融实验对比评价结果

Table
 

7　 Comparative
 

evaluation
 

results
 

of
 

CNN-LSTM-
Attention

 

ablation
 

experiments

算法模型 RMSE MAE R2

CNN 0. 985 0. 685 0. 734

LSTM 1. 341 0. 958 0. 697

CNN-LSTM 0. 757 0. 540 0. 766

CNN-Attention 0. 897 0. 637 0. 789

LSTM-Attention 0. 820 0. 575 0. 811

CNN-LSTM-Attention 0. 655 0. 517 0. 980

　 　 实验结果表明,构建的 CNN-LSTM-Attention 模型的

R2 为 0. 980, 相 较 于 CNN、 LSTM、 CNN-LSTM、 CNN-
Attention 和 LSTM-Attention 分 别 提 升 了 25. 05% 、
28. 88% 、21. 83% 、24. 21% 和 20. 84% ;RMSE 和 MAE 分

别为 0. 655 和 0. 517,与其他组件相比, RMSE 降低了

33. 49% 、51. 17% 、13. 50% 、26. 98% 和 20. 12% , MAE 降

低了 24. 62% 、46. 09% 、4. 37% 、18. 84%和 10. 09% 。
CNN 能够提取局部特征,减少特征冗余,为 LSTM 提

供更高质量的输入;LSTM 捕捉长短期依赖关系,使模型

能够学习更复杂的序列模式,为 Attention 提供丰富的上

下文信息,便于后续聚焦重要时间步;Attention 注意力机

制对 LSTM 的输出加权,聚焦关键时间步。 通过降维、序
列建模和加权,协同模型能够有效利用输入数据中的信

息。 综上,CNN、LSTM 和 Attention 模块的协同作用显著

提高了模型性能,每个模块在构建指令预测模型中均发

挥了重要作用,缺一不可。
针对 Pyramid-CLT 模 型 分 别 建 立 CNN、 LSTM、

Transformer 编码器、CNN-LSTM、CNN-Transformer、LSTM-
Transformer、CNN-LSTM-Transformer、Pyramid-CLT 模型来

对比验证,在相同数据集上的对比评价结果如表 8 所示。

表 8　 Pyramid-CLT 消融实验对比评价结果

Table
 

8　 Comparative
 

evaluation
 

results
 

of
 

Pyramid-CLT
 

ablation
 

experiments

算法模型 RMSE MAE R2

CNN 1. 326 0. 999 0. 964

LSTM 1. 181 0. 901 0. 971

Transformer 编码器 4. 129 2. 868 0. 768

CNN-LSTM
 

1. 169 0. 881 0. 972

CNN-Transformer 2. 927 1. 082 0. 963

LSTM-Transformer 5. 298 3. 533 0. 458

CNN-LSTM-Transformer 4. 898 3. 274 0. 677

Pyramid-CLT 1. 085 0. 818 0. 974
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　 　 由实验结果可知,构建的 Pyramid-CLT 模型的 R2 为

0. 974,相较于 CNN、LSTM、Transformer、CNN-LSTM、CNN-
Transformer、 LSTM-Transformer 和 CNN-LSTM-Transformer
分别提升了 1. 03% 、 0. 33% 、 21. 13% 、 0. 25% 、 1. 14% 、
112. 66% 和 30. 50% 。 RMSE 和 MAE 分别为 1. 085 和

0. 818, 与 CNN、 LSTM、 Transformer、 CNN-LSTM、 CNN-
Transformer、 LSTM-Transformer 和 CNNLSTM-Transformer
相比, RMSE 降低了 18. 17% 、 8. 11% 、 73. 73% 、 7. 22% 、
62. 9% 、 79. 5% 和 77. 85% 。 MAE 降 低 了 18. 13% 、
9. 21% 、71. 47% 、7. 15% 、24. 4% 、76. 8%和 75. 01% 。

CNN 作为特征提取器,捕捉相邻时间步之间的局部

模式,为 LSTM 提供更丰富的输入;LSTM 桥接 CNN 的局

部特征与 Transformer 的全局注意力,将序列编码成上下

文丰富的表示,有效处理梯度消失;Transformer 作为全局

整合器,将 LSTM 的局部时序表示转化为注意力加权的

全局视图,帮助模型在短序列上捕捉复杂交互;Pyramid
融合多尺度特征,丰富了 CNN 输出特征的表达能力,为
后续的 LSTM 和 Transformer 提供更全面的输入。 移除

Pyramid 后,模型丢失了多尺度特征提取能力,削弱了对

复杂序列模式的建模,从而降低了模型性能,由表 8 可知

移除 Pyramid 的 CNN-LSTM-Transformer 模型 RMSE 和

MAE 明显上升,R2 明显下降,表明其对预测外骨骼电机

输出指令任务有重要作用。 综合以上分析,验证了对于

外骨骼输入输出关系预测任务,所设模型结构的有效性

和必要性。
3)PSO 适应度函数消融实验

在融合逆向系统模型预测与前向模型优化的双阶段

协同超调量预测优化策略中,设置 PSO 的适应度函数为

f=MSE+SP+LP,通过迭代优化第 1 阶段逆向模型提供的

预测输出 Θpre 与目标输出 Θ target 之间的 f,从而优化电机

输入指令。 针对适应度函数分别设置 f =MSE,
 

f =MSE+
SP,

 

f=MSE+LP,
 

f =MSE+SP+LP 来对比验证,在相同数

据集上的对比评价结果如表 9 所示。

表 9　 PSO 适应度函数消融实验对比评价结果

Table
 

9　 Comparative
 

evaluation
 

results
 

of
 

the
 

ablation
 

study
 

on
 

PSO
 

fitness
 

function

适应度函数 RMSE MAE R2

f=MSE 0. 593 0. 484 0. 984

f=MSE+SP 0. 602 0. 494 0. 977

f=MSE+LP 0. 558 0. 456 0. 979

f=MSE+SP+LP 0. 537 0. 442 0. 985

　 　 实验结果表明,以 MSE 为主导的适应度函数有效提

高了电机优化输入指令与真实指令的匹配度。 SP 促进

了输入序列的连续性,而 LP 则使优化输入更接近初始猜

测。 三者协同作用显著降低了优化指令与真实指令的

MSE 和 MAE,最终使 R2 达到 0. 985,从而提升了电机输

入指令预测的精度和模型的整体性能。
3. 5　 不同预测方法对比分析

　 　 为了验证提出的双阶段优化策略有效性,在相同数

据集上与多种经典及前沿算法进行对比实验,包括常见

的反向传播神经网络( back
 

propagation
 

neural
 

network
 

,
BPNN)、支持向量机( support

 

vector
 

machine,SVM)、循环

神经网络(recurrent
 

neural
 

network,RNN)、深度神经网络

(deep
 

neural
 

networks,DNN) 和时间卷积网络( temporal
 

convolutional
 

network,TCN)以及目前预测任务领域先进

的残差自注意力时间卷积网络 ( temporal
 

convolutional
 

network
 

with
 

residual
 

self-attention,TCN-RSA) [42] ,一种将

TCN 的局部特征提取能力与 RSA 的全局依赖建模能力

相结合的融合模型,能够高效并行计算,增强稳定性;用
于可解释时间序列预测的神经基础扩展分析 ( neural

 

basis
 

expansion
 

analysis
 

for
 

interpretable
 

time
 

series, N-
BEATS) [43] ,一种通过堆叠全连接神经网络,将时间序列

分解为趋势和季节性分量,并通过基函数扩展进行预测

的模型;TimesNet[44] ,一种通过将一维时序数据转换为二

维张量,并使用 2D 卷积捕捉内周期和间周期变异的创新

时序模型; 基于自回归循环网络的概率预测 ( deep
 

autoregressive
 

recurrent
 

networks,
 

DeepAR) [45] ,能够从相

关时间序列集合中联合学习全局模式。
为确保模型的泛化性能,实现各模型间的公平比较,

采用 5 折交叉验证结合网格搜索进行超参数优化,对比

结果如表 10 所示,模型预测对比结果如图 13 所示。

表 10　 不同预测方法对比实验评价结果

Table
 

10　 Comparison
 

of
 

different
 

prediction
 

methods

算法模型 RMSE MAE R2

BP 1. 055 0. 730 0. 739

SVM 0. 761 0. 580 0. 927

RNN
 

0. 925 0. 651 0. 742

DNN 1. 029 0. 728 0. 675

TCN 0. 804 0. 564 0. 742

TCN-RSA 0. 826 0. 590 0. 807

N-BEATS 0. 712 0. 469 0. 878

TimesNet 0. 819 0. 540 0. 844

DeepAR 0. 965 0. 673 0. 777

Proposed 0. 537 0. 442 0. 985

　 　 相较于提出的模型,经典算法和用于对比的两种先

进算法的 RMSE 和 MAE 均有不同程度的升高,R2 均有

不同程度的下降。 其中,BPNN、SVM 和 RNN 处理时序
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图 13　 不同预测方法对比实验

Fig. 13　 Comparison
 

of
 

different
 

prediction
 

methods

数据时都无法显式捕捉时间依赖关系,难以平衡各输

出变量的预测精度导致性能较差;DNN 忽略时序数据

的顺序信息,需将序列展平或构造时间窗特征,丢失动

态特性;TCN 因感受野不足和对非线性的建模能力有

限导致对某些输出的预测偏差较大。 TCN-RSA 对复杂

动态变化的外骨骼电机输出数据的建模能力较弱,更
适合局部规律性模式,导致模型性能较差;N-BEATS 缺

乏显式时序结构建模,且对噪声或异常值较为敏感,导
致其在外骨骼电机指令预测上表现不佳;TimesNet 对变

量间非线性交互建模不足,缺乏有效的长距离依赖捕

捉机制,在处理外骨骼电机输出的非平稳和突发变化

时,预测精度下降,导致其在外骨骼电机指令预测上表

现不佳;DeepAR 的自回归机制在多步预测中,早期错

误累积导致长时程预测不稳定并且作为 RNN 变体,
DeepAR 易受异常影响。 文章提出的双阶段模型,能够

高效提取外骨骼电机的非周期性、非线性输入输出指

令的局部与全局特征,通过注意力机制动态加权平衡

多个时间步预测,得到初始预测指令,并结合前向模型

和 PSO 优化算法进一步提高预测精度,确保外骨骼实

时、精准地响应人体下肢运动意图。

4　 结　 　 论

　 　 针对下肢外骨骼电机动态特性导致的惯性超调问

题,以人体行走模式抬腿阶段髋关节为研究对象,提出

了一种融合逆模型预测与前向模型优化的双阶段协同

超调量预测优化策略。 该策略以人体下肢运动轨迹作

为 电 机 目 标 值, 在 第 1 阶 段 通 过 基 于 CNN-LSTM-
Attention 的逆向系统模型生成电机初始预测输入指令;
在第 2 阶段利用基于 CNN-LSTM-Transformer 的 PSO 选

择性优化模型对输入指令进行进一步优化调整,从而

在保证实时性的同时显著提升了预测精度。 实验验证

表明,提出的模型能够有效提取电机输入输出特征,精
准捕获数据依赖关系,与其他预测算法相比,表现出更

优的性能。 该方法有效实现了外骨骼电机输出的超调

修正,确保外骨骼能够实时、精确地响应人体下肢运动

意图,为下肢外骨骼的控制优化提供了新的理论和技

术,可供参考。
在后续研究工作中,将考虑引入重力因素,纳入放腿

阶段的电机指令预测,实现行走模式全周期的预测覆盖。
同时,通过结合更多工况的数据,进一步验证所提方法的

实际应用能力,以提升其鲁棒性和泛化性能,从而更好地

满足下肢外骨骼实时控制的任务需求。
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