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Effects of gas spectral absorption and heat transfer
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Abstract: The temperature-field measurements obtained by endoscopic infrared thermography for gas-insulated electrical equipment are
the combined result of target radiation, background radiation, and gas-selective absorption within the equipment enclosure. Current
infrared temperature-calibration methods are mainly developed for atmospheric environments and do not account for the multiple
reflections of thermal radiation between cavity surfaces or the energy attenuation caused by short optical paths and high-pressure gas
atmospheres. To address this issue, this paper proposes an apparent-temperature compensation method for infrared thermography in
closed cavities under specific selectively absorbing gas atmospheres. First, based on a single-path thermal-radiation reflection-
transmission model, spectral transmittance calculations and finite-element simulations of gas-state distributions in closed cavities are
conducted. The influences of radiation wavelength, gas pressure, gas temperature, and optical path length on thermal-radiation
transmittance are analyzed, leading to the establishment of an analytical model for the thermograph’s apparent temperature under
composite paths. Subsequently, heating experiments of electrical equipment under air and SF atmospheres are carried out. Model
parameters for different temperature-field distributions and gas pressures are derived from the measured data, enabling temperature
inversion under different gas conditions. The results indicate that the gas transmittance can be approximated by its initial value after
equipment inflation even during temperature rise, The gas transmittance between discrete target and background surfaces in the cavity can
be treated as a constant, and only the energy attenuation along the optical path before the first radiation reflection needs to be

considered. Finally, the mean absolute error of apparent-temperature prediction under different gas atmospheres is less than 1 K. The
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findings provide a concise computational model for rapidly quantifying the effects of air and SF atmospheres on endoscopic infrared

temperature measurement in closed cavities.

Keywords : background thermal radiation; gas spectral transmittance ; infrared temperature measurement; temperature analysis
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Table 1 Blackbody radiation transmittance under different atmospheres
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Table 3 Inpendent variable statistical analysis results
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