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摘　 要:针对锥束 CT 成像中散射和射束硬化叠加导致图像对比度降低、灰度失真及微缺陷易漏检的问题,提出了一种考虑散

射效应的 X 射线多色衰减校正模型,用于航空发动机涡轮叶片工业 CT 缺陷检测。 该模型由散射项与硬化衰减项串联协同组

成,散射项是使用斜光栅板对涡轮叶片进行两次扫描,采用内外散射场分离与双三次插值、角度样条插值等手段重建全角度散

射分布,得到近似无散射的等效投影;硬化衰减项采用以投影灰度为自变量的指数型硬化曲线,
 

结合穿透厚度先验信息推导加

权补偿表达式,引入灰度权衡因子的加权射束硬化校正方法。 考虑到 CT 成像中散射与硬化是相互作用的,进一步将散射抑制

与硬化校正结果统一到穿透厚度与曝光强度的映射框架中,得到穿透厚度与曝光强度串联的协同校正模型,可同步抑制散射伪

影与杯状伪影。 经过实验结果表明,在 450
 

kV 的 CBCT 系统上,所提方法使涡轮叶片重建图像的信噪比、对比噪声比和平均梯

度分别提升 42. 75% 、75. 92%和 181. 25% ,优于仅采用散射校正算法或硬化校正算法,在缺陷测量能力上,人工设计 0. 3
 

mm 气

膜孔微缺陷深度测量精度达到 0. 28±0. 008
 

mm,与商业软件相比,平均绝对误差和相对误差均值分别降低
 

32. 5% 和
 

2. 2% 。 验

证了该方法对真实涡轮叶片工业 CT 成像散射和硬化伪影的校正能力。
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Abstract:An
 

X-ray
 

polychromatic
 

attenuation
 

correction
 

model
 

that
 

explicitly
 

accounts
 

for
 

scatter
 

is
 

proposed
 

for
 

industrial
 

CT
 

defect
 

inspection
 

of
 

aero-engine
 

turbine
 

blades
 

to
 

address
 

the
 

superimposed
 

scatter
 

and
 

beam
 

hardening
 

in
 

cone-beam
 

CT,
 

which
 

cause
 

reduced
 

image
 

contrast,
 

grayscale
 

distortion,
 

and
 

missed
 

detection
 

of
 

micro-defects.
 

The
 

model
 

is
 

constructed
 

as
 

a
 

cascaded
 

cooperative
 

combination
 

of
 

a
 

scatter
 

term
 

and
 

a
 

hardening
 

attenuation
 

term.
 

In
 

the
 

scatter
 

term,
 

a
 

tilted
 

grating
 

plate
 

is
 

used
 

to
 

scan
 

the
 

turbine
 

blade
 

twice,
 

allowing
 

internal
 

and
 

external
 

scatter
 

fields
 

to
 

be
 

separated.
 

Full-angle
 

scatter
 

distributions
 

are
 

reconstructed
 

using
 

bicubic
 

interpolation
 

and
 

angular
 

spline
 

interpolation
 

to
 

obtain
 

effective
 

projections
 

that
 

approximate
 

scatter-free
 

conditions.
 

In
 

the
 

hardening
 

attenuation
 

term,
 

an
 

exponential
 

hardening
 

curve
 

with
 

projection
 

grayscale
 

as
 

the
 

independent
 

variable
 

is
 

employed,
 

and
 

a
 

weighted
 

beam
 

hardening
 

correction
 

method
 

is
 

developed
 

by
 

deriving
 

a
 

compensation
 

expression
 

based
 

on
 

prior
 

penetration-thickness
 

information
 

and
 

introducing
 

a
 

grayscale
 

trade-off
 

factor.
 

Considering
 

that
 

scatter
 

and
 

hardening
 

are
 

mutually
 

coupled
 

in
 

CT
 

imaging,
 

the
 

results
 

of
 

scatter
 

suppression
 

and
 

beam
 

hardening
 

correction
 

are
 

further
 

unified
 

within
 

a
 

mapping
 

framework
 

between
 

penetration
 

thickness
 

and
 

exposure
 

intensity,
 

yielding
 

a
 

cascaded
 

cooperative
 

correction
 

model
 

that
 

simultaneously
 

suppresses
 

scatter
 

artifacts
 

and
 

cupping
 

artifacts.
 

Experimental
 

results
 

on
 

a
 

450
 

kV
 

CBCT
 

system
 

demonstrate
 

that
 

the
 

proposed
 

method
 

increases
 

the
 

signal-to-noise
 

ratio,
 

contrast-to-
noise

 

ratio,
 

and
 

average
 

gradient
 

of
 

turbine-blade
 

reconstructions
 

by
 

42. 75% ,
 

75. 92% ,
 

and
 

181. 25% ,
 

respectively,
 

outperforming
 

schemes
 

that
 

apply
 

only
 

scatter
 

correction
 

or
 

only
 

beam
 

hardening
 

correction.
 

For
 

an
 

artificial
 

0. 3
 

mm
 

film-cooling-hole
 

micro-defect,
 



　 第 11 期 熊璐琛
 

等:涡轮叶片 CBCT 散射与硬化伪影协同校正方法 261　　

the
 

depth
 

measurement
 

accuracy
 

reaches
 

0. 28±0. 008
 

mm,
 

and
 

the
 

mean
 

absolute
 

error
 

and
 

mean
 

relative
 

error
 

are
 

reduced
 

by
 

32. 5%
 

and
 

2. 2% ,
 

respectively,
 

compared
 

with
 

commercial
 

software,
 

confirming
 

the
 

effectiveness
 

of
 

the
 

method
 

in
 

correcting
 

scatter
 

and
 

beam
 

hardening
 

artifacts
 

in
 

real
 

turbine-blade
 

industrial
 

CT
 

imaging.
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0　 引　 　 言

　 　 锥束 X 射线计算机断层成像( cone-beam
 

computed
 

tomography,CBCT)技术能实现构件内部三维结构的无损

可视化与精确测量,已成为工业叶片微缺陷检测、评估、
分析和尺寸测量的关键手段[1-2] 。 涡轮叶片常用的高密

度镍基单晶高温合金材料及其复杂的薄壁曲面结构,使
得 X 射线穿透过程中极易产生严重的散射[3] 与射束硬

化效应[4] 。 这些物理效应在重建图像中表现为物体图像

边界模糊、分辨率低以及部分图像信息失真,严重影响图

像质量与缺陷识别精度。 因此,需要采取有效方法对涡

轮叶片 CBCT 图像进行伪影校正[5] ,恢复图像质量,提高

涡轮叶片工业检测准确性。
在对涡轮叶片进行射线扫描过程中,会出现旋转中

心位置微小偏移、重建算法、叶片自身散射以及多色射线

束硬化等因素,都将影响重建图像的成像质量。 其中射

线的散射效应和硬化效应对成像质量影响最为严重。 只

针对单一伪影进行的校正难以取得较好的效果,由康普

顿效应引发的散射效应校正后的图像依旧会出现灰度不

均匀的杯状伪影[6] ,传统射束硬化校正算法很难直接应

用于伪影很严重的情况。
在散射伪影校正方面,现有方法主要可分为硬件校

正、软件校正及软硬件结合这 3 类。 硬件校正方法包括

X 射线准直器、空气间隙法和过滤器法等[7-9] ,但是在锥

束 CT 设备上抑制散射方面表现出有限的功效。 软件校

正方法不依赖于专门的硬件,主要通过深度学习[10] 和数

学模型[11] 实现对散射信息的估计。 随着深度学习技术

的兴起和发展,其展现出了卓越学习能力和高效的特征

提取能力,基于卷积神经网络架构[12] 的深度散射估计网

络已成为一种开创性的解决方案,可以在从实际测量的

单能扫 描 投 影 和 CT 衰 减 投 影 中 估 计 散 射 信 息。
Zhang 等[13]设计了一种基于卷积神经网络的耦合伪影校

正算法,但简单卷积无法充分提取
 

CT
 

图像特征,难以彻

底消除伪影。 晏婷等[14]
 

提出双编码
 

U-Net
 

网络模型,结
合二维离散小波变换提取差值图像的低频散射信号,实
现散射校正。 Zhuo 等[15] 提出散射核叠加启发的卷积网

络用于 CBCT 散射校正,解决了深度学习方法与物理散

射模型结合不紧密、缺乏物理一致性的问题,但散射核函

数的设计依赖经验参数,对不同设备的适配性需手动调

整。 柴世杰等[16] 提出一种多尺度生成对抗网络,实现耦

合伪影的校正。 然而,这些方法需要大量的训练数据和

计算资源,给工业上检测任务带来了巨大的挑战。 且实

际工业检测中常无法获取高质量数据集,导致经验模型

鲁棒性不足。 因此软硬件结合仍是工业现场最常用的方

法,可快速精准检测散射信息。 其中散射校正板( beam
 

stop
 

array,BSA)方法[17] 是将散射校正板平行放置于探测

器前获取整幅投影的散射分布,已在传统 CBCT 中取得

良好效果,但检测过程中需进行重复扫描,不仅增加了检

测成本,还因校正板在锥束 CT 成像时,其投影会在探测

器上产生半影效应,限制了该方法的实际工程应用。
工业 CT 实际使用的射线源为多能射线束,而常用的

经典滤波反投影算法[18] 基于单能射线束假设,导致重建

图像出现灰度从边缘到中心递减的“杯状” 伪影。 射束

硬化伪影校正方面研究,可以被分类为双能量方法[19] 、
统计迭代方法[20] 和正弦图修复方法[21] 。 其中双能量校

正方法需耗费较长后处理时间,且对计算性能要求较高,
成为其应用瓶颈。 迭代方法需先获取

 

X
 

射线能谱及材

料能量相关衰减系数的先验信息[22] 。 Brabant 等[23] 采用

迭代重建算法在重建过程中考虑了射束硬化的影响。 为

了解决正弦图一致性问题,Cao 等[24] 提出了射束硬化校

正回归模型,通过仿真数据训练模型,有效提升尺寸测量

精度。 Romano 等[25] 在重建后对射束硬化曲线进行线性

化处理实现了精确校正。 Zhao 等[26] 通过模拟 X 射线光

子与成像材料的物理相互作用,开发出兼具快速性与准

确性的射束硬化校正方法。 李长春等[27] 提出了做多阈

值分割以获取伪影区域,再用
 

B
 

样条插值重建缺失投影

数据,从而去除金属伪影。 Xiu 等[28] 依据射线等效穿透

长度,建立了基于三项式拟合的多色投影数学模型,更贴

近实际投影。 Yang 等[29] 在明确硬化信息与射线路径关

联的基础上,提出一种受泰勒公式启发的硬化曲线补偿

校正方法,并在
 

CBCT
 

系统上验证多色投影校正效果,证
明了补偿措施的有效性。

依据多种伪影在涡轮叶片 CT 图像特性,提出一种考

虑散射的多色射线衰减校正模型,建立穿透厚度与曝光

强度协同校正模型,散射项通过设计倾斜栅条的光栅校

正板,消除探测器投影中的半影效应,利用散射信息模糊

特点,稀疏采样插值散射信息;硬化项利用指数函数模型

和射线长度与投影关系的先验知识,引入自适应权衡因

子,从多色投影估计单色投影。 建立穿透厚度与曝光强

度协同校正模型,从而实现两种伪影的同步抑制,提升工

业叶片 CT 重建图像质量与微缺陷检测精度。
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1　 理论分析

1. 1　 基于斜光栅散射板的散射校正

　 　 1)斜光栅散射板原理

斜光栅散射校正板( tilted
 

beam
 

stop
 

array,TBSA)是

基于 BSA 法的改进散射校正方法,使栅格中轴线聚焦射

线源,这样可以避免扫描半影区过多。 斜光栅板放置于

被测物体与探测器之间,设计的几何示意图如图 1 所示。

图 1　 几何信息

Fig. 1　 Geometric
 

information

TBSA 方法计算散射图像需要两组投影数据,如图 2
所示。 第 1 组:工件进行 CT 扫描的投影数据,如图 2( a)
所示;第 2 组:在工件与探测器之间加斜光栅板后 CT 扫

描的投影信息,如图 2(b)所示。

图 2　 散射校正示意图

Fig. 2　 Scatter
 

correction
 

schematic
 

diagram

2)散射场估计步骤

无工件时,光栅板 DR 投影数据中栅格区域灰度值

已经超过了探测器本身的散射值,这种情况被称为平板

探测器内散射。 因此在估计散射值的过程中,也需要考

虑在狭缝区域也含有内散射的影响。
散射场的估计基于相同成像参数下的两组投影数

据。 首先对斜光栅投影图像进行阈值分割,定位完全屏

蔽的栅格区域和透射的狭缝区域。 从栅格区域提取初始

的内散射场,经双三次插值平滑得到其完整分布。 接着

利用内散射场对含斜光栅投影进行初步校正,再分别从

初步校正后的图像和无光栅的原始图像中提取狭缝区域

的信号,差值即为该区域外散射场估计。 最后,对外散射

场估计图像进行双三次插值与高斯滤波处理,得到投影

图像完整散射场分布图像,流程如图 3 所示。

图 3　 散射估计流程

Fig. 3　 Scatter
 

estimation
 

flowchart

3)插值散射估计

散射图像特点是具有模糊性且不包含工件具体结构

细节,由工件内部结构的密度分布决定。 CBCT 扫描得到

投影数量通常为几百幅至上千幅,相邻投影信息差异小。
结合散射场固有属性与投影采集特性,可通过插值

算子优化散射场投影数量,降低工业中
 

TBSA
 

算法的使

用成本。 比如,原始 720 张投影图像等间距选取
 

100
 

张

重构对应角度散射场,进行角度三次样条插值算法生成

全角度散射场图像。 这样能在大幅降低全角度散射场重

构时间成本,同时有效维持图像连续性与整体质量。
1. 2　 基于加权因子的射束硬化校正算法

　 　 1)线性硬化校正模型

当 CT 成像中多色 X 射线束穿过物体时,低能 X 射

线较高能光子优先被吸收。 随路径增加,高能光子占比

上升,射线平均能量升高,衰减系数随路径变长递减。 导

致相同路径下多色与单色投影存在差异(如图 4( a) 所

示)。 因此,经射束硬化后的投影重建图像无法准确反映

材料衰减系数(如图 4(b)所示),表现为切片中心衰减系

数小于边缘,即产生杯状伪影。

图 4　 射束硬化过程变化曲线

Fig. 4　 Beam
 

hardening
 

process
 

variation
 

curves

射束硬化校正模型含硬化曲线(多色投影) 和校正

直线(单色投影),其校正思路是:建立两者数学表达式,
由硬化曲线算多色投影对应的穿越长度,再通过校正直

线得对应单色投影灰度。 多色投影与衰减的关系随着穿

过物体的光线长度的变化而变化,因此多色投影是路径

长度和衰减系数的线积分。 而衰减系数是 X 射线能量的
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函数,也与射线的长度有关。 显然,多色投影为:
PP = L·μa(E,L) (1)

式中:
 

PP 表示对数变换后的多色投影;
 

L 为射线穿过物

体的长度;μa(E,L) 为长度为 L 的平均吸收系数。
文献[20]中的硬化校正( HC)算法是基于最小二乘

法用指数模型拟合多色投影与路径长度,即:
L = α·Pp·exp(β·(Pp)

γ) (2)
式中: α、

 

β、
 

γ 为拟合参数。
单色投影呈过原点线性增长,为路径长度与衰减系

数的乘积。 线性硬化校正 ( linear
 

hardening
 

correction,
LHC)以一条校正直线修正多色引起的硬化数据,将

式(2)中函数在零点处的导数作为该直线的斜率,即:
K =L′(0) = α (3)
修正线的斜率 K 看作是等效的单色投影。 得到硬化

曲线后,对基于相同路径的多色投影的单色长度模型进

行校正。 则有:
L = K·Pm =L′(0)·Pm = α·Pm (4)

式中: Pm 是单色投影。
2)加权因子推导

 

加权 射 束 硬 化 校 正 算 法 ( weighted-compensation
 

hardening
 

correction,WCHC)针对由于不同能量下的硬化

趋势不同,单一 LHC 模型下的校正曲线过硬,导致了部

分位置硬化校正过度,出现内亮外暗的现象。 进一步地

对硬化校正前后投影进行加权,达到中和过渡校正的目

的。 基于多色投影和衰减系数构建了反映两者关系的路

径长度模型,即:
L(Pp) = Pp / μa(E,L) (5)
由泰勒公式, L(Pp) 可近似表示为基于可微函数的

Pp0 值附近的导数,长度模型可改写为:
L(Pp) = t(Pp0)·Pp +t′(Pp0)·(Pp - Pp0) +

o((Pp - Pp0) n) (6)
式中: Pp0 为多色投影的平均值;t(Pp0) 为线性衰减系数

的倒数;o((Pp - Pp0) n) 为多项式残差。 将式(6) 中的

二次及后续多项式残差近似设计为非线性模型。 然后射

束硬化曲线模型可以构造成:
L(Pp) ≈ c·Pp + a(Pp)

b (7)
式中: a、b、c分别为模型系数,且 a > 0,b > 0,c > 0。 由

于多色和单色的路径长度相同,因此可以从上面得到的

模型中得到校正后的投影,即:
Pm = L(Pp) / L′(0) + Δ = (c·Pp + a(Pp)

b) / c + Δ
(8)

其中 Δ 为噪声估计值,为了减少初始线的斜率对整个

校正结果的影响,引入一个权衡因子 λ, 作为对校正投影

的妥协。 然后计算出最终的投影(单色投影)可以计算为:
Pm = (aPp

b + cPp) / c + λ·Pp + Δ (9)
其中权衡因子 λ 定义为:

λ =
∑

M

i = 1
(Pm) i

∑
M

i = 1
(Pp) i

=
∑

M

i = 1
(axb

i + cx i) / c

∑
M

i = 1
x i

(10)

基于二值化切片及采样射线求交的硬化曲线获取方

法:对投影数据预重建得到切片图像,经二值化处理后,
按像素交线权值计算特定射线路径位置与角度下射线和

体素的长度和。
此时,将多色投影拉回单色投影的校正已经完成。

图 5 为权值硬化算法的流程图。

图 5　 权值硬化算法

Fig. 5　 Weighted
 

hardening
 

correction
 

algorithm

1. 3　 穿透厚度与投影值映射的协同校正模型

　 　 散射场校正基本思路是在曝光强度中估计出散射强

度,而硬化校正基本思路是建立穿透厚度与多色投影的

映射模型。 两者协同校正需统一变量,假设散射场校正

演变成核函数与图像的卷积,文献[30]提到可以将散射

场强度 Is 与曝光强度 ID 的映射模型为:

Is = f( ID) = as·IbsD (11)
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式中: as 为调整散射场的全局强度参数;bs 为待调整散射

场的局部强度参数。
根据

 

Lambert-Beer 定律核心是
 

“衰减与强度对数相

关”,这里有效曝光强度是
 

“总曝光强度减去散射场强

度”,即:

Pp = ln
Ibg,eff

ID,eff
( ) = ln( Ibg - as·Ibsbg) - ln( ID - as·IbsD )

(12)
式中: Ibg 为背景曝光强度;Ibg,eff 为背景(无物体衰减) 的

有效曝光强度;ID,eff 为含物体时的有效曝光强度。
因此将式(12)代入式(9),即可建立穿透厚度 T 与

曝光强度 ID 的串联协同校正模型,如式(13) 所式。

T=a[ln( Ibg -as·Ibsbg) -ln( ID-as·IbsD )] b+

c(1+λ)[ln( Ibg -as·Ibsbg) -cln( ID-as·IbsD )] +Δ (13)

2　 实验验证

2. 1　 试验对象与参数

　 　 本次 CT 扫描试验检测设备配置为 450
 

kV 的

YXLONFF85CT 型工业用微焦点 X 射线 CT 系统。 系统采

集图像灰度范围为 0~65
 

535,FDD(射线源中心到探测器的

距离) 为 453
 

mm; FOD ( 光源中心到物体的距离) 为

1 133
 

mm,探 测 器 大 小 为 3
 

054 × 3
 

054, 像 素 尺 寸 为

0. 139
 

mm。 涡轮叶片自然缺陷样本难获取,故设计加工多种

人工缺陷:6
 

个
 

0. 6
 

mm×0. 3
 

mm×0. 3
 

mm
 

裂纹及
 

4
 

个直径
 

0. 3
 

mm
 

气孔,被检缺陷叶片和检测现场如图 6 所示。

图 6　 被检叶片和检测现场

Fig. 6　 Tested
 

blade
 

and
 

inspection
 

site

涡轮叶片检测使用的铅板斜光栅设计几何参数如

表 1 所示。
2. 2　 散射估计及拟合硬化曲线

　 　 在相同扫描参数(扫描电压为 425
 

kV、扫描电流为

1. 5 mA)下,用 TBSA 算法计算两组投影数据的散射信

息,图 7 给出了估计散射场过程,图 7(a)为叶片 DR 投影

图像,图 7(b)为含斜光栅板的 DR 投影图像,图 7( c)为

估计散射场图像。

表 1　 光栅板几何参数

Table
 

1　 Grating
 

plate
 

geometric
 

parameters
项目 数值 / mm

光栅材料 铅锑合金

光栅宽度(P) 430
光栅高度(G) 466

光栅板厚度(T) 20
光栅狭缝宽度(V) 3
光栅格宽度(U) 2

相邻狭缝中心距(D) 5

图 7　 估计散射信息

Fig. 7　 Compute
 

scattering
 

information

图 8　 硬化曲线拟合

Fig. 8　 Beam
 

hardening
 

curve
 

fitting

　 　 图 8 为硬化曲线拟合的过程,图 8( a)为重建切片二

值化,图 8(b)为不同穿透厚度下,X 射线与叶片二值图
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像的作用序列,图 8(c)给出了采用指数函数对采样离散

数据的拟合曲线,表 2 为计算的硬化曲线拟合参数。

表 2　 曲线拟合采样参数

Table
 

2　 Sampling
 

parameters
 

of
 

curve
 

fitting

硬化曲线 a b c λ

数值 0. 034
 

46 5. 894
 

34 4. 485
 

06 1. 590
 

3

2. 3　 伪影校正对比分析

　 　 为证实提出方法在叶片 CT 图像伪影校正方面的有效

性,对比分析涡轮叶片的原始图像、TBSA、LHC、WCHC、
TBSA-LHC 及 TBSA-WCHC 的第 100 层、第 512 层 CT 切片

图像。 图 9 结果显示:TBSA 有效抑制了叶盆区域的散射

伪影,提升轮廓清晰度,结构细节更易辨识,但仍存在边缘

亮、中心暗的杯状伪影。 单一硬化校正方法(LHC / WCHC)
因未剔除散射信号的干扰,导致硬化校正曲线拟合精度不

足,复杂结构区域校正效果差,无法有效改善图像质量。
TBSA-LHC 虽能一定程度减轻杯状伪影,但出现内部过亮、
外部偏暗的过度校正。 在所有对比方法中,TBSA-WCHC
协同校正方法在有效提升投影清晰度、抑制散射伪影的基

础上,改善了图像灰度均匀性。

图 9　 不同方法处理后切片图像

Fig. 9　 Sliced
 

images
 

processed
 

by
 

different
 

methods

取第 512 层不同方法重建切片的同一位置直线灰度

值,归一化后结果如图 10 所示。
TBSA 校正后,工件结构更清晰、对比度及灰度值有

提升,但叶片边缘存在明显灰度跳变,呈典型杯状伪影,
边界模糊导致叶盆边缘难识别。 而未先去除散射成分而

直接进行硬化校正(LHC / WCHC),因散射信号严重干扰

衰减曲线拟合,灰度曲线杂乱。 相比之下,TBSA-WCHC
协同校正后,图像灰度分布均匀,杯状伪影有效抑制,体
现了散射校正与权值硬化校正协同改善 CT 图像质量的

综合优势。
为了定量评估校正前后图像的表现,采用信噪比

(signal
 

to
 

noise
 

ratio,SNR)、对比噪声比( contrast
 

to
 

noise
 

ratio,CNR)及平均梯度( arerage
 

gradient,AG) 等[31] 量化

指标进行效果验证,图 11 为第 100 层选取的感兴趣区域

进行评价指标的定量分析。

图 10　 第 512 层沿直线灰度变化对比

Fig. 10　 Comparison
 

of
 

grayscale
 

variations
 

along
 

a
 

straight
 

line
 

on
 

the
 

512th
 

slice

图 11　 第 100 层 ROI 区域

Fig. 11　 ROI
 

region
 

on
 

the
 

100th
  

slice

表 3 显示,TBSA-WCHC 协同校正算法的重建切片相

比原始重建切片感兴趣区域的各指标提升明显,SNR 提

升 42. 75% ,CNR 提升 75. 92% ,AG 提升 181. 25% ,表明

协同方法在伪影抑制与细节保留上的表现优于单一校正

方法。
2. 4　 缺陷检测精度对比验证

　 　 验证协同校正方法对工业
 

CT
 

检测涡轮叶片气膜孔

周微缺陷定量检测的提升效果。 原始无处理重建因伪影

无法检出缺陷及定量分析,仅将 TBSA 校正和 TBSA-
WCHC 校正结果后的三维重建数据导入 VG

 

Studio
 

MAX
软件,与使用 VG

 

Studio
 

MAX 软件重建时调用内置的伪

影校正功能对比。 图 12 ( a) 为 TBSA 校正结果,其中

10 处缺陷里除缺陷 6 的重建结果相对平缓,仅呈现微弱

起伏外,其余 9 处缺陷的检出结果中,缺陷特征清晰可

辨,叶片部分区域缺失严重,整体灰度差异大。 图 12( b)
为 TBSA-WCHC 校正结果,与图 12( c) 的 VG 软件校正
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　 　 　 　 表 3　 校正前后切片数值对比

Table
 

3　 Numerical
 

comparison
 

of
 

slices
 

before
 

and
 

after
 

correction

切片层号 校正方法
SNR CNR AG

数值 增长率% 数值 增长率% 数值 增长率%

第 100 层

原始图像 11. 341
 

5 / 1. 172
 

5 / 0. 001
 

6 /

TBSA
 

11. 787
 

8 3. 93 1. 680
 

8 43. 33 0. 002
 

4 50. 00

LHC
 

11. 778
 

2 3. 85 1. 740
 

5 48. 44 0. 001
 

7 6. 25

WCHC
 

11. 589
 

2 2. 18 1. 357
 

5 15. 78 0. 001
 

3 -18. 75

TBSA-LHC 12. 867
 

3 13. 45 1. 967
 

1 67. 77 0. 003
 

3 106. 25

TBSA-WCHC 16. 189
 

7 42. 75 2. 062
 

7 75. 92 0. 004
 

5 181. 25

图 12　 测量缺陷

Fig. 12　 Defect
 

dimension

结果可以对比看出,协同方法与商用软件重建结果在检

出结果上一样,都可以准确识别出 10 个微缺陷,而且叶

片重建结果信息基本上完整,灰度均匀。
表 4 显示在协同算法处理后微裂纹缺陷尺寸,缺陷

测量深度为 0. 28±0. 008
 

mm,各缺陷测量深度与真实缺

陷深度(0. 3
 

mm)更加接近。
以 1 号缺陷为例,测量深度为 0. 294 3

 

mm,对比仅

TBSA 时的测量结果,误差改善为 0. 022 9;2 号缺陷测量

深度为 0. 296 4
 

mm,误差改善为 0. 034 0,精度有明显的

提升。 此前未检出的
 

6
 

号缺陷(仅 0. 090 5
 

mm),经过

TBSA-WCHC 后,测量深度为 0. 284 5
 

mm,误差改善为

0. 194 0。 微气孔缺陷中
 

7
 

号与真实值仅差
 

0. 077
 

mm,处
于结构复杂的叶片叶盆区域 8 号和 10 号缺陷重建结果

都为 0. 27
 

mm 以上,均优于单一 TBSA 校正。 与 VG 检
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　 　 　 　 表 4　 VG 测量缺陷尺寸

Table
 

4　 Defect
 

dimension
 

measurement
 

using
 

VG
(mm)

序号 TBAS TBSA-WCHC VG

1 0. 271
 

4 0. 294
 

3 0. 283
 

5

2 0. 262
 

4 0. 296
 

4 0. 275
 

5

3 0. 246
 

5 0. 283
 

8 0. 274
 

7

4 0. 256
 

0 0. 297
 

5 0. 277
 

3

5 0. 236
 

9 0. 292
 

5 0. 290
 

6

6 0. 090
 

5 0. 284
 

5 0. 286
 

0

7 0. 274
 

4 0. 292
 

3 0. 289
 

0

8 0. 255
 

1 0. 279
 

2 0. 275
 

8

9 0. 272
 

5 0. 276
 

0 0. 264
 

0

10 0. 253
 

2 0. 270
 

9 0. 286
 

1

测结果对比,TBSA-WCHC
 

的平均绝对误差(0. 013 3
 

mm)较
 

VG(0. 019 7
 

mm)降低
 

32. 5% ,相对误差均值仅
 

4. 4% ,低
于

 

VG
 

的
 

6. 6% 。
综合来看,在使用 VG 软件测量时,经过协同算法伪

影校正后,从无法检出缺陷到大多数缺陷的测量深度趋

近真实值,整体测量误差的平均值有所降低,进一步体现

出散射与硬化协同算法对涡轮叶片缺陷深度测量的准

确性。

3　 结　 　 论

　 　 针对工业 CT 检测涡轮叶片时,因散射与射束硬化效

应导致的图像质量退化及微小缺陷漏检问题。 针对这一

问题,提出了基于斜光栅散射校正(TBSA)与加权射束硬

化校正( WCHC)的协同伪影抑制算法,并在 CBCT 系统

上对该方法的性能进行了验证。 实验结果表明,该算法

在多色投影下的重建效果优于仅散射校正或仅硬化校正

算法。
与近期兴起的基于深度学习的校正方法相比,提出

的 TBSA-WCHC 协同伪影抑制方法不依赖于大规模、高
质量的标注数据进行训练,其校正能力源于对物理过程

的显式建模,在训练数据难以获取的工业检测场景下更

具实用性和鲁棒性。 尽管深度学习在特定条件下可能达

到优异的性能,但其“黑箱”特性与协同方法强调的物理

可解释性路径不同。 因此,该算法有望成为复杂几何形

状和高能 X 射线成像的无损检测工业中提供一种高效、
透明且不依赖数据驱动的替代方案。 协同方法讨论的关

键问题更多地涉及工业无损成像。 实验研究中使用的叶

片是单一材料的,所提出的模型对于复杂物体的权衡因

子自适应估计也是有效的。 但对于射线穿过多种材料时

的权衡因子的估计仍存在不足。 因此,基于多种材料的

CT 散射硬化协同校正方法是下一步研究的关键。
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