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Research on performance evaluation methods of SERF-MEG source localization
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(1. Research Institute of Large Scientific Installations, Bethang University, Beijing 100191, China; 2. Hangzhou Institute of
Extremely Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou 310051, China)

Abstract; Tn human magnetoencephalography (MEG) research, the spatial location and orientation information of neural sources inside
the human are difficult to obtain directly, making it challenging to intuitively and repeatedly evaluate the performance of spin-exchange
relaxation-free (SERF) magnetometer array systems for magnetoencephalography ( MEG) imaging. To address this issue, neuronal
activity in the human brain can be modeled using equivalent current dipoles (ECDs) characterized by explicit position and orientation
information. Based on this premise, we designed a brain-like physical dry phantom supporting multiple orientations with 25 ECDs at
different positions, thereby providing controllable and known magnetic source information. Furthermore, a joint optimal orientation
estimation method was proposed to simultaneously estimate the single dipole orientation under different signal-to-noise ratios. A potential
source space of 3 mm resolution was created within the phantom, and dipole localization experiment was constructed using a 7-channel-
SERF magnetometer array. Experimental results showed that, under known-source conditions, the SERF array achieves a mean
localization error of 16. 86 mm and an average orientation error of 15. 35°. These findings indicate that constructing a physical phantom
with known magnetic sources provides an effective approach for evaluating the feasibility of multi-channel SERF magnetometer arrays for
MEG imaging, and offers a reliable basis for optimizing design under different channel configurations. In addition, the proposed physical
phantom exhibits good repeatability and can be employed for routine calibration, performance consistency verification and operational

maintenance of SERF-MEG systems. Overall, the physical phantom and orientation estimation method presented in the study provide
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reference value for performance assessment and engineering implementation of SERF magnetometer array in MEG imaging.

Keywords : brain-like physical dry phantom; joint optimal orientation estimation method; localization error; orientation error; feasibility

evaluation
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Fig. 1 The structure diagram and physical diagram of

single tubular quadrilateral pyramid
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value of location (mm)
P A bR it A b {7 B IRE

(-3.45, -34.42, 118.34) (-5.03, —32.68, 118.04)  2.37

(30.51, -0.40, 118.80)  (21.97, —20.68, 124.04)  22.62
(57.05, -0.64, 94.08)  (63.97, -11.68, 76.04)  22.25
(-3.36, -0.57, 127.31)  (-14.03, 12.32, 118.04)  19.13
(-3.36, -0.57, 127.31)  (-5.03,9.32, 118.04)  13.66
(54.87, 33.34, 62.00) (54.97,39.32, 43.04)  19.88
(-2.33,33.92, 117.14)  (-8.03, 18.32, 115.04)  16.74
(57.33, -1.80, 28.13) (63.97, 3.32, 43.04) 17.10
(-69.36, 0.14, 61.04)  (-62.03, -20.68, 55.04)  22.87

(-60.21, 33.14, 61.30)  (-62.03, 21.32, 61.04)  11.96
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Table 3 The estimated value and theoretical

value of direction

FHR Ty 1] ] A5 1 o FABIRZE/(°)
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(0.980,0. 030,0. 20) (0.840,0. 540,0. 080) 31.19
(0.000,1.000,0.000) (0. 100,0.990,0. 000) 5.79
(0.070,0.07,-0.998)  (0.190,-0.260,-0.950)  19.40
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Fig. 15 Measured position errors and angle errors

SCIGEE SR (AR TR BT BRAR TR vp (1 S 35
PR ZEZIN 16. 86 mm , f IR ZELIN 15. 14°, XFiR2E
KR, — 7 T Sl H B B S AL B Rk 7 dHE K
AT 55— 7 T, T B S GE B TP A AR AR R K
N, BRI SRR 07 B A 3 B I JE A7 A ME— AR
e, P, 5 23R T 22 1 B4 50 A% B R e kA7 5K
55, AT T SR ORS 16 A4 Sk 4 B ASE AR R[] 467 40 i
AT A BE R PTAL T A

5 & it

ARMFFEET X BEF 28 SERF-MEG 1% 1878 22 Ge /e i Ui
E LA HE AT Bk = L JG D53 A B G R R, 8 i — B
DR ISRAI A A= i N IR Vo R U PN R 7B
RUFE ] e 515X SERF 5% 112 & T MEG I 37 1 fE
AN B, ORI T2 B AT MEG 1 [0 2 5 € 7 3

BEsE, (7 #IERFS) 20 SERF #4581 R G EE T %

TIENE RV T B A R, O Jim 2 5 T SRS fy ) A

RUAIRE ML VEREITAL B0 T kA, ILAh, th T MEG &/

e 3 T L SR WSS LR BEPPAG T AR R GE

REJZ T R MO T i P S Bt T AR AL T-BL,

SZ 3k

[1] FRED A L, KUMAR S N, KUMAR HARIDHAS A,
et al. A brief introduction to magnetoencephalography
(MEG) and its clinical applications[ J ]. Brain Sciences,
2022, 12(6) : 788.

[ 2] TIVANAINEN J. On-scalp magnetoencephalography :
Theory, implementation and measurements[ D |. Espoo,
Finland; Aalto University, 2020.

[ 3] COHEN D. Magnetoencephalography: Evidence of mag-
netic fields produced by alpha-thythm currents [ J ].
Science, 1968, 161(3843) . 784-786.

[ 4] COHEN D. Magnetoencephalography: Detection of the
brain’s electrical activity with a superconducting magneto-
meter J]. Science, 1972, 175(4022) ;: 664-666.

[ 5] HARIR, SALMELIN R. Magnetoencephalography: From
SQUIDs to neuroscience: Neuroimage 20th anniversary
special edition [ J]. Neurolmage, 2012, 61 (2) . 386-
396.

(6] Aikik, £5, R, % FOLR SERF @511 =4

W IR AMERHETT IR (1] (AR, 2022,
43(6) :55-62.
SONG X D, REN W, SUO Y CH, et al. Sequential
magnetic compensation calibration method of single beam
SERF magnetometer based on three-axis magnetic field
decoupling[ J]. Chinese Journal of Scientific Instrument,
2022, 43(6) :55-62.

[ 7] DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh
sensitivity magnetic field and magnetization measurements
with an atomic magnetometer [ J ]. Applied Physics
Letters, 2010, 97(15) . 151110.

[ 8] BOTO E, MEYER S S, SHAH V, et al. A new
generation of magnetoencephalography: Room temperature
measurements using optically-pumped magnetometers [ J |.
Neurolmage, 2017, 149. 404-414.

[9] BOTO E, HOLMES N, LEGGETT J, et al. Moving
magnetoencephalography towards real-world applications
with a wearable system[ J]. Nature, 2018, 555(7698) :
657-661.

[10] QI SH J, SONG X D, JIA L, et al. The impact of

channel density, inverse solutions, connectivity metrics



192 O & M a6tk
and calibration errors on OPM-MEG connectivity 2022, 15(19) . 6680.
analysis; A simulation study [ J]. Neurolmage, 2025, [20] EREF, Rikik, FatAL, 4. SERF R FREmit A&
308 121056. RESHUR S BRI (1], (URS I Fe 4R, 2022,
[11] QISH J, SONG X D, JIA L, et al. Investigating the 43(9) :1-9.
effects of calibration errors on the spatial resolution of ZHENG M L, SONG X D, ZHOU B Q, et al. Research
OPM-MEG beamformer imaging[ J]. Neurolmage, 2025, on the adaptive parameter calibration method of SERF
310; 121078. atomic magnetometer [ J ]. Chinese Journal of Scientific
[12] HILL R M, BOTO E, HOLMES N, et al. A tool for Instrument, 2022, 43(9) :1-9.
functional brain imaging with lifespan compliance [ J .
Nature Communications, 2019, 10(1) ; 4785. fEEE N
[13] SARVAS J. Basic mathematical and electromagnetic B, 2023 4F TR EY B
concepts of the biomagnetic inverse problem[ J]. Physics v > , TR AL IO AR A
in Medicine & Biology, 1987, 32(1); 11-22. ‘- BT, BT 1 FES 2 SERF i
[14] FUCHS M, DRENCKHAHN R, WISCHMANN H, et al. - T G R PR R AL Tk
An improved boundary element method for realistic ‘ o . E-mail ; ¢sh20020126@ 163. com
volume-conductor modeling [ J]. IEEE Transactions on Cui Shuhao received his B. Sc. degree from Tianjin University
Biomedical Engineering, 1998, 45(8) : 980-997. in 2023. He is currently a master student at Beihang University.
[15] VORWERK J, CHO J H, RAMPP S, et al. A guideline His main research interest includes performance evaluation
for head volume conductor modeling in EEG and MEG[J ]. method of SERF-MEG source localization.
Neurolmage, 2014, 100. 590-607. SRR L (E1E#) 2004 4F T A JE B
[16] ILMONIEMI R J, SARVAS J. Brain signals: Ph‘ysics TR (2011 AET A B T A
;;1;1 ml\‘jt[thtlepmatlcs z(z)fI;V[EG and EEG [ M ]. Cambridge, LA A2 . 2016 4F T SRS ALK A
. Mit Press, . o e g N "
[17] HAUK O, STENROOS M, TREDER M S. Towards an ‘ 'S’—L'%'}(EFJ@%“?—L'{M,iﬂjﬂjt}iﬁﬁ.%ﬁn%ﬁ?ﬁu
objective evaluation of EEG/MEG source estimation ﬁ. TR, ERFITT M NET SERF 191555
methods-the linear approach [ J ]. Neurolmage, 2022, RSk BRI T 35 AT W B LA
255. 119177. E-mail ; songxinda@ buaa. edu. cn
[18] XU C B, WANG J SH, YIN SH X, et al. A focusing Song Xinda ( Corresponding author) received his B. Sc. and
MUSIC algorithm for baseline-free Lamb wave damage M. Sc. degrees both from Taiyuan University of Technology in
localization[ J].  Mechanical ~Systems and  Signal 2004 and 2011, and his Ph. D. degree from Beihang University
Processing, 2022, 164 108242. in 2016. He is currently an associate researcher at Beihang
[19] FANG X J, MA D Y, SUN B W, et al. A high- University. His main research interests include SERF-based

performance magnetic shield with MnZn ferrite and mu-

metal film combination for atomic sensors[ J]. Materials

ultra-weak magnetic field measurement technology and biomedical

engineering technology based on weak magnetic detection.



