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异质自适应 ACO:角度惩罚与精英策略融合∗

曾宪阳,梁远生,于　 浩,刘　 畅,杨红莉

(南京工程学院工程训练中心应用技术学院　 南京　 211167)

摘　 要:针对传统蚁群算法(ACO)在路径规划中收敛速度慢、易陷入局部最优和路径拐点多等局限性,提出了一种改进的 ACO
算法。 该算法融合了异质自适应机制、角度惩罚与精英策略,并系统验证其泛化性能。 通过构建异质-同质双种群协同架构,将
两类不同特征的蚂蚁种群结合,增强了算法在多种环境下的全局搜索能力,有效避免种群的过早收敛;引入方向感知的角度惩

罚因子,通过在路径规划中加入角度惩罚,避免了不必要的路径拐点,优化了路径平滑性,并提升了算法对复杂地形的适应性;
采用精英加权信息素更新策略,使得优秀解的影响力在信息素更新过程中得到更大的体现,加速了收敛过程并提高了稳定性。
在多规模栅格地图的对比实验中,所提算法展现出了优异的泛化性能与鲁棒性:在 50×50 复杂环境下,相较于传统 ACO 算法,
路径长度减少 14. 1% ,拐点降低 69. 4% ;相较于现有改进算法,路径长度缩短 8. 4% ,拐点减少 66. 6% ,迭代次数下降 82. 6% 。
自动导引车(AGV)实车实验进一步验证了算法在真实场景中的泛化能力,路径长度缩短 11. 1% ,拐点减少 78. 2% 。 创新性地

提出了种群异质自适应调度机制、方向感知的角度惩罚策略和精英信息素加权更新方法,显著提升了 ACO 算法的泛化性能,为
移动机器人导航系统的实际应用提供了可靠的技术支撑。
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Abstract:This
 

paper
 

addresses
 

the
 

limitations
 

of
 

traditional
 

ant
 

colony
 

optimization
 

(ACO)
 

in
 

path
 

planning,
 

such
 

as
 

slow
 

convergence,
 

susceptibility
 

to
 

local
 

optima,
 

and
 

numerous
 

path
 

inflection
 

points,
 

by
 

proposing
 

an
 

improved
 

ACO
 

algorithm.
 

This
 

algorithm
 

integrates
 

a
 

heterogeneous
 

adaptive
 

mechanism,
 

angle
 

penalty,
 

and
 

an
 

elite
 

strategy,
 

and
 

systematically
 

verifies
 

its
 

generalization
 

performance.
 

By
 

constructing
 

a
 

heterogeneous-homogeneous
 

dual-population
 

collaborative
 

architecture,
 

combining
 

two
 

ant
 

populations
 

with
 

different
 

characteristics,
 

the
 

algorithm′s
 

global
 

search
 

capability
 

in
 

various
 

environments
 

is
 

enhanced,
 

effectively
 

avoiding
 

premature
 

convergence.
 

Introducing
 

a
 

direction-aware
 

angle
 

penalty
 

factor
 

avoids
 

unnecessary
 

path
 

inflection
 

points,
 

optimizes
 

path
 

smoothness,
 

and
 

improves
 

the
 

algorithm′s
 

adaptability
 

to
 

complex
 

terrain
 

by
 

adding
 

angle
 

penalties
 

to
 

path
 

planning.
 

The
 

elite-weighted
 

pheromone
 

update
 

strategy
 

allows
 

the
 

influence
 

of
 

excellent
 

solutions
 

to
 

be
 

more
 

fully
 

reflected
 

in
 

the
 

pheromone
 

update
 

process,
 

accelerating
 

the
 

convergence
 

process
 

and
 

improving
 

stability.
 

In
 

the
 

comparative
 

experiment
 

of
 

multi-scale
 

grid
 

maps,
 

the
 

algorithm
 

proposed
 

in
 

this
 

paper
 

showed
 

excellent
 

generalization
 

performance
 

and
 

robustness:
 

in
 

a
 

complex
 

50×50
 

environment,
 

compared
 

with
 

the
 

traditional
 

ACO
 

algorithm,
 

the
 

path
 

length
 

was
 

reduced
 

by
 

14. 1%
 

and
 

the
 

inflection
 

point
 

was
 

reduced
 

by
 

69. 4% ;
 

compared
 

to
 

existing
 

improved
 

algorithms,
 

the
 

path
 

length
 

was
 

shortened
 

by
 

8. 4% ,
 

the
 

inflection
 

point
 

was
 

reduced
 

by
 

66. 6% ,
 

and
 

the
 

number
 

of
 

iterations
 

was
 

reduced
 

by
 

82. 6% .
 

The
 

real
 

vehicle
 

experiment
 

of
 

the
 

automated
 

guided
 

vehicle
 

( AGV)
 

further
 

verified
 

the
 

generalization
 

ability
 

of
 

the
 

algorithm
 

in
 

the
 

real
 

scene,
 

the
 

path
 

length
 

was
 

shortened
 

by
 

11. 1% ,
 

and
 

the
 

inflection
 

point
 

was
 

reduced
 

by
 

78. 2% .
 

This
 

study
 

innovatively
 

proposed
 

a
 

population
 

heterogeneous
 

adaptive
 

scheduling
 

mechanism,
 

a
 

direction-aware
 

angle
 

penalty
 

strategy,
 

and
 

an
 

elite
 

pheromone
 

weighted
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update
 

method,
 

which
 

significantly
 

improved
 

the
 

generalization
 

performance
 

of
 

the
 

ACO
 

algorithm
 

and
 

provided
 

reliable
 

technical
 

support
 

for
 

the
 

practical
 

application
 

of
 

mobile
 

robot
 

navigation
 

systems.
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0　 引　 　 言

　 　 路径规划是自主导航的核心技术,旨在为移动体寻

找最优或较为理性可行路径,已广泛应用于物流、自动驾

驶和自动导引车( automated
 

guided
 

vehicle, AGV) 等领

域[1] 。 仿生算法在该领域展现出显著优势,其中蚁群算

法(ant
 

colony
 

optimization,
 

ACO) 因具有分布式计算、强
鲁棒性和全局搜索能力等特点,成为研究热点[2-3] 。

1999 年 ACO 由 Dorigo 等[4] 提出,模拟蚂蚁通过信息

素寻找食物的行为机制。 然而,传统 ACO 存在收敛速度

慢、易陷入局部最优和路径拐点多等缺陷[5] 。 针对这些

问题,研究者提出了多种改进策略。 2023 年 Liu 等[6] 通

过优化初始信息素分布和引入方向判断启发函数,减少

无效搜索和转弯次数;Li 等[7] 提出混合蚁群与人工蜂群

算法,采用两阶段协同策略提升解的质量;Tang 等[8] 采

用自适应状态转移规则和动态信息素更新机制提高收敛

速度;2025 年 Li 等[9] 通过非均匀信息素初始化和多目标

启发策略避免早熟收敛;Fang 等[10] 通过引入随机步长与

随机放大系数两项关键参数作用于信息素更新机制中,
有效增强了算法突破局部最优解的能力,提升了全局搜

索性能。 Yu 等[11] 提出了一种基于空间爆炸与长短期记

忆的异质引导蚁群算法,该算法通过结合异质蚁群机制

和引导策略,优化了传统蚁群算法在路径规划中的搜索

性能。 与传统的单一蚁群策略不同,异质蚁群机制允许

不同的蚂蚁群体在同一系统中采用不同的搜索策略,提
升了全局搜索能力和环境适应性。 引入的空间爆炸和长

短期记忆机制进一步增强了算法的学习能力和记忆能

力,使得算法能够在复杂环境中更高效地进行路径搜索。
Chen 等[12] 提出了一种跳跃点搜索改进的蚁群算法混合

算法,旨在提高路径寻优精度并减少转弯次数。 首先,算
法通过引入跳跃点的初始信息素分布,以引导蚁群更高效

地找到路径,进而加速了初期迭代速度。 其次,设计了启

发式函数中的转弯成本因子,以提升路径的平滑度。 最

后,结合了自适应奖励惩罚因子和最大最小蚁群系统,增
强了算法的迭代速度和全局搜索能力。 Cui 等[13] 提出了

一种多策略自适应蚁群优化算法,该算法通过 4 项设计改

进提升了 ACO 的性能。 首先,提出了一种方向引导机制,
优化了节点选择性能;其次,引入了自适应启发式函数,减
少了路径的长度和转弯次数;此外,采用了确定性状态转

移概率规则,促进了 ACO 的收敛速度;最后,通过非均匀信

息素初始化增强了 ACO 选择有利区域的能力。

现有改进方法多集中于信息素更新和启发函数优

化,并通过精准地调控信息素浓度以及启发式信息的权

重比例等关键参数,以增强算法的探索能力和收敛特性。
但参数调优过程复杂且环境依赖性较强,且多数研究未

能有效解决路径平滑性问题。 基于此,本研究提出一种

基于异质自适应机制的改进 ACO 算法,主要创新包括:
构建异质-同质双种群协同架构维持种群多样性;引入角

度惩罚因子优化状态转移概率减少路径拐点;采用精英

蚂蚁线性加权沉积策略加速算法收敛。 实验结果表明,
本算法在路径长度、平滑性和收敛速度方面均优于对比

算法。

1　 问题描述

　 　 在当今先进的智能制造及智能物流体系架构之

中,自动导引车发挥着至关重要的作用,主要承担着物

料搬运等关键任务[14] 。 而其中尤为关键的核心技术环

节便是路径规划[15] ,该技术聚焦于在既定的环境条件

下,精准地为
 

AGV
 

规划出从起始点至目标点的有效通

行路线[16] 。 在此过程中,需充分考量障碍物的规避需

求,同时致力于对一系列性能指标进行优化,其中包括

路径的总长度、拐点的数量等因素,以实现高效且稳定

的运行效果[17] 。
在开展本项研究过程中,为了实现高效的建模及精

准的求解操作,采用栅格地图对环境进行离散化表示。
所谓栅格地图,是将连续的工作空间划分为 M×N 的规则

二维单元格矩阵,每一个独立的单元格 cell( i, j) 都对应

着一个特定的位置状态,若某个单元格与障碍物区域重

叠,便会被赋予标记值 1,以此表明该区域属于不可通行

的范围;反之,若不存在此类重叠情形,则将其标记为 0,
意味着此区域是可供通行的可行区域,如图 1 所示。

环境地图可以形式化如式(1)所示。
Map = {cell( i,j) | 1 ≤ i ≤ M,1 ≤ j ≤ N},cell( i,j)

∈ {0,1} (1)
在栅格地图体系下,AGV 遵循八邻域规则实现路径

规划与位移操作。 记偏移集合如式(2)所示。
Δ = {(dx,dy) dx,dy∈ { - 1,0,1},(dx,dy) ≠ (0,

0)} (2)
机器人在位置(x,y)的八邻域定义如式(3)所示。
N8(x,y) = {(x + dx,y + dy) (dx,dy)∈ Δ} (3)
其中,仅当邻居节点位于地图边界内且不属于障碍

单元格时,才属于有效邻域。
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图 1　 地图栅格化

Fig. 1　 Map
 

rasterization

基于上述栅格地图建模,可将该环境抽象表述为一

个有向图结构: G = (V,E), 其中,V 为所有自由单元格

构成的节点集合,E 为节点间的可行连接关系。 AGV 的

路径定义如式(4)所示。
P = {v0,v1,…vi…,vk},

 

v0 = s;
 

vk = g;
 

vi ∈ V (4)
并且满足 (vi,vi +1) ∈ E,

 

i = 0,1,…,k - 1。
在 AGV 基于栅格地图开展路径规划的相关研究中,

其路径优化工作涵盖多项关键考量因素,诸如路径长度、
平滑程度、安全性能以及能耗状况等。 其中,路径长度堪

称衡量路径质量的核心要素之一,对 AGV 的运行效率及

能耗表现具有决定性影响[18] 。 一般而言,更为短直的路

径可有效缩短行驶时长,进而实现能源消耗与任务执行

成本的双重降低。 鉴于栅格地图的特殊构造特点,所生

成的路径多呈现为由诸多折线段拼接而成形态,倘若其

中拐点设置过多,那么 AGV 在行进过程中便需频繁实施

转向动作[19] 。 此种情况不仅会增大控制系统的操作复

杂度、延长任务执行时间,还会因频繁转向引发更高的能

量损耗以及机械设备的磨损加剧。 特别是在实际作业场

景里,相较于直线行驶,AGV 完成转弯动作所需耗费的

能量与时间均显著增加。 鉴于此,为使优化方案更契合

工程实践需求,本研究聚焦于路径总长度与拐点数量两

项关键参数作为优化目标,旨在构建兼具高效性与可实

施性的最优路径方案。 路径长度和拐点个数函数如

式(5)所示。

L(P) = ∑
k-1

k = 0
d(vi,vi +1)

C(P) = ∑
k-1

i = 1
δ(θi)

ì

î

í

ïï

ïï

(5)

其中, d(vi,vi +1) 表示相邻节点间的欧氏距离,θi 为

路径在节点 vi 的转角,若方向发生变化则 δ(θi) = 1, 否则

为 0,拐点数越少,路径越平滑,可执行性越强。 因此

AGV 路径规划问题可以形式化如式(6)所示。
P∗ = arg

 

min
P

(L(P) + C(P)),P ∩ {cell( i,j) = 1} =

Ø (6)
即在栅格地图中寻找一条从起点到目标点的最优路

径 P∗ ,路径必须避开障碍物,并在满足可行性约束的条

件下最小化代价函数 L(P) + C(P)。
为了对本文的改进蚁群算法进行全面评估,引入多

目标评价值,包括路径长度和能源损耗[2] 。 能源损耗计

算如式(7)所示。

E(P) = ϑ1 × ∑
n-1

i = 1
α( l i -1,l i) + ϑ2 × C(P) (7)

其中, ϑ1、ϑ2 为转弯角度和拐点个数的权重因子,取
值分别为 0. 63 和 0. 37,α( l i -1,l i) 为路径中第 i - 1 段线

段 l i -1 与第 i段线段 l i 之间的夹角。 多目标评价值为路径

长度与能源损耗构成的权重组合, 计算公式如式(8)
所示。

J(p) = kL × L(p) + kE × E(p) (8)
其中, kL 为路径长度权重系数,该值为 0. 7,kE 为能

源损耗权重系数,该值为 0. 3。

2　 传统蚁群算法

　 　 蚁群算法作为一种极具代表性的群体智能优化技

术,其核心机制在于模拟自然界中蚂蚁群体借助信息素

进行路径探索与决策的过程。 该算法依托信息素的正反

馈作用,持续强化优质路径的选择倾向,进而实现对全局

最优解的有效探寻与收敛[20] 。 每只人工蚂蚁在构造解

时严格遵循特定的概率规则来确定下一个访问节点,其
状态转移概率定义如式(9)所示。

Pk
ij( t) =

[τ ij( t)] α·[η ij( t)] β

∑ l∈allowedk
[τ il( t)] α·[η il( t)] β

, j ∈ allowedk

0, 其他

ì

î

í

ï
ï

ï
ï

(9)

其中, Pk
ij( t) 表示第 k只蚂蚁在 t代从节点 i转移到节

点 j 的概率;τ ij( t) 为边( i,j)
 

上在迭代 t 时刻的信息素浓

度;allowedk 表示第 k 只蚂蚁当前可选择的候选节点集

合;η ij( t) 为启发因子,其值如式(10) 所示。

η ij( t) = 1 / (x i - x j)
2 + (y i - y j)

2 (10)
其中, α 和 β 分别表示信息素浓度和启发式信息的

重要程度。
当路径构建工作顺利完成之后,算法将着手对所经

路径上的信息素开展更新操作[21] 。 此信息素更新机制
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包含两个关键组成部分,分别是信息素的自然挥发过程

以及基于特定条件的增量沉积行为,如式(11)所示。
τ ij( t + 1) = (1 - ρ)·τ ij( t) + Δτ ij( t) (11)
其中, ρ ∈ (0,1) 表示信息素挥发系数,用于防止信

息素无限积累,Δτ ij( t) 表示在第 t 代中所有蚂蚁对边

( i,j) 的信息素增量,通常定义为:

Δτ ij( t) = ∑
m

k = 1
Δτk

ij( t)

Δτk
ij( t) =

Q
Lk

, tour( i,j) ∈ tourk

0, tour( i,j) ∉ tourk
{

ì

î

í

ï
ïï

ï
ïï

(12)

其中, m为蚂蚁数量,Lk 为蚂蚁 k的路径长度,Q为信

息素强度参数。

3　 改进蚁群算法

3. 1　 异质自适应蚂蚁设计

　 　 在蚁群算法领域,参数配置作为关键技术环节,其合

理与否直接决定了算法的整体效能与优化效果, 文

献[22]通过控制变量法开展系统性实验,先通过固定 α、
ρ、Q 和 m 的取值,聚焦于 β 参数展开专项测试以获取其

最优解,随后基于此结果逐步推进其他参数的优化确定

工作。 文献[23]采用一种改进型自适应参数贪婪策略,
该策略使 α 与 β 参数能够依据当前迭代进程呈非线性动

态调整,此种设计有效强化了算法对全局空间的探索能

力,同时显著降低了陷入局部极小值的风险。 而文

献[24]则深入剖析了蚁群算法的应用特性,指出针对不

同类型问题需采用差异化的参数方案;传统依赖人工经

验或大量重复实验进行参数调优的方式存在效率低下且

普适性不足的缺陷。 此外,该算法在搜索进程中展现出

鲜明的阶段性特征:迭代初期主要依托启发式信息引导

路径选择,赋予算法较强的探索潜力;随着迭代推进至后

期阶段,则逐步转向以信息素浓度为核心决策依据,推动

解空间向收敛方向发展[25] 。
基于上述研究现状与问题,构建了异质自适应蚂蚁

模型,该模型通过将蚁群划分为两个功能互补的子群

体———异质蚁群与同质蚁群来实现算法性能提升。 其中,
异质蚁群中的个体被赋予差异化的信息素敏感度参数 α
及启发式权重系数 β,这种参数配置方式有效模拟了自然

界蚂蚁行为的生物多样性特征,从算法架构层面显著增强

了全局搜索空间的覆盖能力与环境适应机制。 在迭代过

程中,系统优先激活异质蚁群执行路径探索任务。 当完成

初步搜索后,筛选出当前最优路径对应的精英个体,将其

特有的 α、β 参数组合同步至同质蚁群,使后者转化为具备

即时优势特征的“克隆体”继续深化搜索进程。 为维持种

群进化动力,每完成 5 次迭代周期后实施动态调整策略:

基于所有异质个体的平均路径指标进行优劣势评估,剔除

表现最差的末端个体;同时对最优个体施加高斯扰动生成

变异后代并纳入种群体系。 这种基于统计特性的动态更

新机制不仅实现了蚁群结构的自适应演化,还通过引入可

控随机性有效平衡了局部精细开发与全局广泛探索的双

重目标,成功规避了传统算法易陷入早熟收敛的问题。
图 2 为本方法的主要思想迭代过程图。

图 2　 异质自适应方法迭代过程

Fig. 2　 Iterative
 

procedure
 

of
 

the
 

heterogeneous
 

adaptive
 

method

本文蚁群算法的状态转移概率公式如式(13)所示。
P(k)

ij ( t) =

[τij(t)]αk·[ηBFS,ij(t)]βk·κij

∑ l∈allowedk
[τil(t)]αk·[ηBFS,il(t)]βk·κil

, j ∈ allowedk

0, 其他

ì

î

í

ï
ï

ï
ï

(13)
其中, P(k)

ij ( t) 和 τ ij( t) 与式 (9) 中对应项相同,
ηBFS,ij( t) 以及 κ ij 后续再详细介绍。

在异质蚁群模型中,个体蚂蚁的信息素更新系数 α
与启发式因子 β 呈现非均匀特性。 相较于均匀随机赋值

方式,采用正态分布进行参数初始化可显著提升算法性

能[26] 。 早期研究基于大量旅行商问题(traveling
 

salesman
 

problem
 

,TSP)实例验证,推荐使用 α = 1、β = 2 的组合配

置;而近期有学术成果则倾向于将参数设置为 α = 1、
β= 5,该设置已在 TSP 求解及路径规划领域展现出优异

的应用效果[27] 。 为系统评估不同 β 值对算法性能的影

响,本研究在 map3 测试环境中设计了对照实验:分别设

置两组独立运行的试验组,其 β 均值分别为 2 和 5,每组

均执行 20 次完整迭代过程。 最终获取的路径长度统计

数据以箱线图形式呈现如图 3 所示,直观反映了不同参

数配置下的算法稳定性与寻优能力差异。
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图 3　 不同 β 均值箱线图

Fig. 3　 Boxplots
 

of
 

mean
 

values
 

for
 

different
 

β
 

settings

在本次实验中,当 β 的均值设定为 2 时,所得到的路

径平均值达到 52. 352,其中最长路径值为 54. 769,最短

路径值为 50. 527;而当 β 的均值提升至 5 时,经过 20 次

重复实验,所有结果均稳定收敛于 50. 527 这一数值。 基

于上述实验数据与结论,本研究最终确定将参数 α 的均

值设置为 1,β 的均值设定为 5,异质蚂蚁的 α 与 β 取

值为:
αk ~ TN(1,0. 22;[0,10])

βk ~ TN(5,0. 22;[0,10]){ (14)

平均路径最优异质蚂蚁产生“子代”的 α 和 β 为:
αchild = clip(αbest

k + δ,[0,10])

βchild = clip(βbest
k + δ,[0,10])

　 δ ~ N(0,0. 052)

ì

î

í

ïï

ïï

(15)

3. 2　 状态转移概率优化

　 　 在传统蚁群算法中,其启发信息的设定存在明显

局限性,仅以当前节点与待选节点之间距离的倒数作

为依据,鉴于这些节点间距离差异微小,致使启发信息

所发挥的作用极为有限。 同时,该算法未将待选节点

到目标点的距离纳入考量范畴,使得蚂蚁缺乏对整体

环境的感知能力,难以迅速锁定目标[28] 。 针对此弊端,
本文提出采用具备障碍物感知特性的余程估计来充当

启发信息。 具体操作是从目标点着手,运用广度优先

搜索( breadth-first
 

search,BFS)算法,预先为每个可达网

格点精准计算出抵达终点的最短路径步长 hest( j) , 该

过程具体步骤为:
1)创建一个与地图大小相同的矩阵 Hest,初始矩阵

所有元素全为 + ∞ ,将终点坐标 g 的 hest(g) 设置为 0,将
其加入队列;

2)从队列中取出当前节点 u 扫描它的八邻域节点,
对于未访问过的邻居节点 v,执行 hest(v) = hest(u) + 1;

3)队列为空时结束,若某节点仍是+∞ ,则该节点不

可达。

hest( j) 表 示 的 是 可 达 节 点 j = (x,y) 到 终 点

g = (xg,yg) 的最短路径距离估计,该数值是依据地图所

呈现的拓扑结构以及环境中障碍物的分布情况,经过计

算得出的估计步数距离。 在此基础上,本文对传统的启

发式函数进行了优化改进,改进后的启发函数如式(16)
所示。

ηBFS,ij( t) = 1
1 + hest( j)

(16)

此设计方案致力于引导蚂蚁在路径抉择过程中,优
先选取那些具备更高可行性且在拓扑结构上与终点更为

邻近的路线。 通过这种优化机制,能够有效规避因障碍

物存在而产生的误导性指引,从而显著降低算法陷入局

部最优解的可能性,提升整体路径规划的效率与准确性。
在传统蚁群算法模型中,个体运动决策遵循基于信

息素轨迹强度及启发式因子的联合作用机制,即 P( i →
j) ∝ (τ ij)

α·(η ij)
β,该机制虽然能够逐步引导蚂蚁向最

短路径靠拢,但是易导致路径规划结果包含冗余拐点,显
著增加实际运行成本。 针对此缺陷,对状态转移模型实

施改进,融入转角约束因子,当蚂蚁处于节点 i时,通过计

算当前行进方向矢量dki
→

与候选分支方向矢量之间的夹

角 θ ij,如图 4 所示。

图 4　 方向拐角示意图

Fig. 4　 Turning-angle
 

schematic

采用指数衰减函数对大角度转向进行概率惩罚,实
现从决策层面优化路径平滑度。 该设计有效降低了路径

几何复杂度,使算法生成的轨迹更趋近于工程应用所需

的高效路线。
转角惩罚因子如式(17)所示。

κ ij = exp -
θ ij

90°( )

θ ij = arccos
dki
→·d ij

→

dki
→ · d ij

→( )

ì

î

í

ï
ïï

ï
ïï

(17)

当 θ ij = 0° 时,κ ij = 1,直行不受惩罚;当 θ ij = 45° 时,
κ ij ≈ 0. 607,有效抑制拐弯;当 θ ij = 135° 时,κ ij ≈ 0. 223,
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显著抑制拐弯。 引入该因子后算法得到路径的拐点数量

明显减少。
3. 3　 改进信息素更新策略

　 　 在蚁群算法的运行机制中,其关键在于借助信息素

的正反馈作用以及蒸发机制,来引导蚁群持续优化并最

终获得理想解。 文献[9] 基于标准更新式框架,引入随

机步长与随机放大系数两项关键参数。 其中,随机步长

作用于每只蚂蚁的路径长度,实现动态调整;随机放大系

数则针对信息素增量进行随机缩放处理。 通过上述双重

随机化机制,有效增强了算法突破局部最优解的能力,提
升了全局搜索性能。 本次研究中,经过改进后的蚁群算

法面临着一个问题,即存在数量众多的异质蚂蚁,其中适

应性较弱的蚂蚁所得到的解的质量相较于适应性强的蚂

蚁而言,往往存在较大差距。 基于此,本文在进行信息素

更新操作时,仅引入精英个体予以强化,同时还采用了名

次加权机制,旨在有效提升算法的全局收敛速度。 为确

保算法具备持续的探索能力、防止信息素过度累积,每次

迭代结束后都会执行信息素蒸发与补充程序,本文算法

在完成信息素蒸发步骤之后,仅选取部分优质路径作为

信息素补充的来源,以此加强对高质量解的导向作用。
假设在第 t 次迭代中得到的可行路径集合为 P( t),依路

径长度进行排序后,选取其中前 K 条最短的精英路径作

为重点强化对象,对于每条精英路径 k,若其长度为 Lk,
则在路径边( i,j)上的增量如式(18)所示。

Δτ k
ij =

ω k·Q
Lk

ω k =
K - r + 1

∑
K

s = 1
(K - s + 1)

·K

ì

î

í

ï
ïï

ï
ïï

(18)

其中, ω k 为基于路径长度排名的权重,r 为精英路径

集合中第 k 条路径的排名 r ∈ {1,…,K}, 信息素矩阵的

更新公式如式(19)所示。

τ ij( t + 1) = (1 - ρ)τ ij( t) + ∑
K

k = 1
Δτ k

ij (19)

在算法运行过程中,本文采用特定的信息素更新策

略,即精英强化与名次加权相结合的方式,这种策略具备

显著优势,一方面能够有效维持解的多样性,避免陷入局

部最优;另一方面可着重强化优质路径所发挥的贡献,从
而显著加快算法的收敛速度,提升整体运算效率与效果。

3. 4　 算法流程图

　 　 改进蚁群算法的整体执行流程如图 5 所示。 首先,
在栅格地图上设定起点和终点,初始化信息素矩阵以及

异质种群蚂蚁的参数。 然后,利用 BFS 算法从终点出发

预估各可行网格到目标的最短步长。 随后算法进入迭代

循环:在每一次迭代中,异质蚁群依据改进的状态转移概

率公式逐步构造从起点到终点的可行路径,同质蚁群则

继承当前精英异质个体的参数进行强化搜索;完成一代

搜索后,先对全体路径进行性能评估与排序,在信息素挥

发的基础上仅对精英路径采用名次加权规则进行信息素

沉积。 并且每隔 5 次迭代还对异质蚁群执行“劣质个体

淘汰-最优个体高斯扰动复制”的自适应调度操作,维持

种群多样性与搜索活性。 上述过程反复迭代,直至达到

最大迭代次数,最终输出路径长度与拐点数均较优的规

划结果。

图 5　 改进蚁群算法

Fig. 5　 Improved
 

ACO
 

algorithm
 

4　 仿真及泛化实验分析

　 　 为全面、严谨地评估本文算法的综合性能,重点考察

其泛化能力与鲁棒性,本研究基于 MATLAB
 

2023b 平台

开展了系统的仿真实验。 为科学确保结果的可靠性并有

效排除偶然因素干扰,实验设计了多组不同规模的测试

场景,涵盖 20×20 规格的栅格地图(命名为 map1)、30×
30 规格的栅格地图(命名为 map2)、40×40 规格的栅格

地图(命名为 map3) 以及 50×50 规格的栅格地图(命名

为 map4)。 每个场景均重复进行 20 次独立实验,以全面

评估算法在不同复杂度下的泛化表现及稳定性。 作为对

照,本文选取了传统 ACO 算法以及文献[9]中所提及的

改进 ACO 算法进行对比分析。 相关算法的具体参数设

置详见表 1 所示内容。
4. 1　 20×20 栅格地图

　 　 针对 map1 场景开展了 3 种蚁群算法的性能评估与
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　 　 　 　 表 1　 仿真实验参数

Table
 

1　 Simulation
 

experiment
 

parameter

算法 α β Q ρ m
传统 ACO 1 5 100 0. 5 50
文献[9] 0. 98 3 1 0. 3 50
本文算法 式(14) 式(14) 10 0. 2 50

对比分析。 其中,图 6 直观呈现了各算法在此地图下的

路径规划成效,图 7 则展示了对应的迭代收敛过程。

图 6　 map1 路径规划结果对比

Fig. 6　 Comparison
 

of
 

path-planning
 

results
 

on
 

map1

具体而言,传统 ACO 算法表现出明显的绕行特征,
所规划路径曲折复杂。 其在迭代初始阶段虽能实现快速

　 　 　 　

图 7　 map1 迭代收敛

Fig. 7　 Iteration
 

convergence
 

plot
 

for
 

map1

下降,然而一旦收敛,路径长度便固定于 29. 213,未能达

成最优解。 文献[9]提出的算法相较于传统 ACO 算法有

所改进,冗余路径得到一定缩减且成功寻得最优解,但该

算法存在路径拐点过多的问题,同时前期路径长度波动

剧烈,反映出搜索过程稳定性欠佳;尽管后期能够收敛至

最优解,但收敛速度相对迟缓。 而本文所提出的算法展

现出显著优势,不仅成功找到全局最优解,而且在拐角惩

罚机制与启发式信息的引导下,规划出的路径更为平滑、
拐点数量大幅减少。 尤其在小型栅格地图环境下,本文

算法仅需一次迭代即可锁定最优解,兼具高效的收敛速

度与良好的稳定性。
表 2 呈现的数据结果显示,在开展的 20 次实验过程

中,传统 ACO 算法、文献[9]所提出的算法以及本文算法

均成功找到最短路径。

表 2　 map1 环境实验结果

Table
 

2　 Experimental
 

results
 

in
 

the
 

map1
 

environment

算法

路径长度 迭代次数 拐点个数

最大值 最小值 平均值
本文算法

减小率 / %
最大值 最小值 平均值

本文算法

减小率 / %
最大值 最小值 平均值

本文算法

减小率 / %

J(p)

传统 ACO 30. 041 28. 627 29. 500 2. 96 61 12 18. 90 94. 4 13 6 9. 3 55. 9 27. 09

文献[9] 28. 627 28. 627 28. 627 0. 00 30 16 25. 90 95. 9 11 5 7. 9 48. 1 25. 68

本文算法 28. 627 28. 627 28. 627 2 1 1. 05 5 4 4. 1 22. 86

　 　 从性能指标对比来看,本文算法展现出显著优势:其
平均路径长度较原版算法降低了 2. 96% ;在拐点均值方

面,相较于传统 ACO 算法减少了 55. 9% ,与文献[9]算法

相比也降低了 48. 1% 。 尤为突出的是,在这 20 次实验

里,本文算法有 19 次仅需一次迭代便能精准定位到最优

解,充分彰显了该算法的高效性与稳定性。

4. 2　 30×30 栅格地图

　 　 本文针对 map2 场景下的路径规划任务进行了不同

蚁群算法的性能评估与对比分析。 其中,图 8 清晰呈现

了 3 种蚁群算法在该地图上的路径规划结果;图 9 则直

观展示了 3 种算法各自的迭代收敛情况。
依据表 3 所列数据进行分析可知,传统 ACO 算法所

得最短路径长度为 47. 113,并未找到最短路径。 与之形

成对比的是,文献[9]提出的算法以及本文所阐述的算

法均成功找到了最优路径。 进一步比较可知本文算法路

径平均值较传统 ACO 算法降低了 2. 43% , 相较于文
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图 8　 map2 路径规划结果对比

Fig. 8　 Comparison
 

of
 

path-planning
 

results
 

on
 

map2

献[9]算法也减少了 1. 38% ;在迭代次数方面,分别比传

　 　 　 　

图 9　 map2 迭代收敛

Fig. 9　 Iteration
 

convergence
 

plot
 

for
 

map2

统 ACO 和文献[9]算法缩减了 85. 2% 与 88. 7% ;在拐点

个数这一指标上同样表现优异, 分别比两者减少了

58. 3%和 61. 3% 。

表 3　 map2 环境实验结果

Table
 

3　 Experimental
 

results
 

in
 

the
 

map2
 

environment

算法

路径长度 迭代次数 拐点个数

最大值 最小值 平均值
本文算法

减小率
最大值 最小值 平均值

本文算法

减小率
最大值 最小值 平均值

本文算法

减小率

J(p)

传统 ACO 48. 284 47. 113 47. 437 2. 43% 60 28 41. 00 85. 2% 22 11 15. 6 58. 3% 43. 99

文献[9] 50. 042 46. 284 46. 913 1. 38% 73 44 53. 60 88. 7% 21 11 16. 8 61. 3% 44. 83

本文算法 46. 284 46. 284 46. 284 8 5 6. 05 8 6 6. 5 36. 63

4. 3　 40×40 栅格地图

　 　 图 10 展示了 3 种蚁群算法在 map3 环境下的路径规

划结果对比情况,图 11 则呈现了它们各自的迭代收敛态

势,表 4 记录了此次实验所获得的各项数据。

图 10　 map3 路径规划结果对比
Fig. 10　 Comparison

 

of
 

path-planning
 

results
 

on
 

map3

图 11　 map3 迭代收敛

Fig. 11　 Iteration
 

convergence
 

plot
 

for
 

map3

传统 ACO 算法在 map3 环境中未能实现收敛,其所

得最短路径长度达 68. 012,而文献[9] 所提算法可能因

参数设置与带凹槽结构的地图适配性欠佳,同样未达成

收敛状态,与之形成对比的是,本文算法 20 次实验均收

敛到 58. 355,稳定性较强。 相较于传统 ACO 算法及文

献[9] 算法, 本文算法在平均路径长度上分别缩减
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　 　 　 　 表 4　 map3 环境实验结果

Table
 

4　 Experimental
 

results
 

in
 

the
 

map3
 

environment

算法

路径长度 迭代次数 拐点个数

最大值 最小值 平均值
本文算法

减小率
最大值 最小值 平均值

本文算法

减小率
最大值 最小值 平均值

本文算法

减小率

J(p)

传统 ACO 113. 330 68. 012 81. 702 28. 6% - - - - 74 36 46. 3 73. 7% 76. 21

文献[9] 76. 012 66. 012 70. 711 17. 5% - - - - 37 30 32. 6 62. 6% 69. 43

本文算法 58. 355 58. 355 58. 355 16 9 12. 8 14 11 12. 2 48. 89

28. 6%与 17. 5% ;拐点数量均值相较于二者亦显著下降,
降幅分别为 73. 7%和 62. 6% 。
4. 4　 50×50 栅格地图

　 　 图 12 为 3 种蚁群算法在 map4 中的路径规划结果对

比图,图 13 清晰描绘了 3 种算法于 map4 地图上的迭代

收敛态势,而表 5 记录了此次实验的各项具体结果。

图 12　 map4 路径规划结果对比

Fig. 12　 Comparison
 

of
 

path-planning
 

results
 

on
 

map4

图 13　 map4 迭代收敛

Fig. 13　 Iteration
 

convergence
 

plot
 

for
 

map4

　 　 传统 ACO 算法 20 次实验均未实现收敛,且未能成

功探寻到最短路径。 文献[9]所提出的算法虽在迭代进

程的后期达到了收敛状态,但同样未能获取最短路径。
本文算法在 map4 中 20 次实验均快速收敛并找到最短路

径。 依据表 5 中的统计数据可知,与传统 ACO 算法相

比,本文算法的路径平均值降低了 14. 1% ,拐点个数平均

值减少了 69. 4% ;相较于文献[9]算法,本文算法的路径

平均值降低 8. 4% ,拐点个数平均值减少 66. 6% ,同时平

　 　 　 　
表 5　 map4 环境实验结果

Table
 

5　 Experimental
 

results
 

in
 

the
 

map4
 

environment

算法

路径长度 迭代次数 拐点个数

最大值 最小值 平均值
本文算法

减小率
最大值 最小值 平均值

本文算法

减小率
最大值 最小值 平均值

本文算法

减小率

J(p)

传统 ACO 110. 29 83. 154 88. 857 14. 1% - - - - 41 30 35. 6 69. 4% 83. 51

文献[9] 89. 740 81. 154 83. 368 8. 4% 92 68 81. 2 82. 6% 43 24 32. 6 66. 6% 73. 63

本文算法 76. 326 76. 326 76. 326 17 10 14. 1 12 10 10. 9 60. 48

均迭代次数缩减了 82. 6% 。 这些数据充分表明,本文算

法在路径规划性能上具有明显提升。
4. 5　 50×50 迷宫地图

　 　 为了验证本文算法在复杂障碍物环境中的性能,本文
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设置了 50×50 的迷宫环境(map5)对改进蚁群算法进行验

证。 在 20 次的实验中传统 ACO 算法与文献[9]算法均未

找到可行路径(图中不再显示),本文算法 20 次规划中 14
次均找到了可行路径,本文算法具有较好的泛化能力与稳

定性。 路径规划结果如图 14 所示,图 15 描绘了算法的迭

代收敛态势。 表 6 记录了此次实验所获得的各项数据。

图 14　 map5 路径规划结果对比

Fig. 14　 Comparison
 

of
 

path-planning
 

results
 

on
 

map5

图 15　 map5 迭代收敛图

Fig. 15　 Iteration
 

convergence
 

plot
 

for
 

map5

5　 真实环境试验验证

　 　 为切实检验所提算法于实际应用场景中的效能表

现,开展了基于激光雷达装备的移动平台实车测试验证

工作。 实验载体选用配备 N10 型激光雷达的差速驱动轮

式机器人平台,其结构参数如下:双主驱动轮间距设定为

185
 

mm,前后各配置一组万向辅助轮,两组万向轮之

　 　 　 　
表 6　 map5 环境实验结果

Table
 

6　 Experimental
 

results
 

in
 

the
 

map5
 

environment

算法

路径长度 迭代次数 拐点个数

最大值 最小值 平均值
本文算法

减小率
最大值 最小值 平均值

本文算法

减小率
最大值 最小值 平均值

本文算法

减小率

J(p)

传统 ACO - - - - - - - - - - - - -

文献[9] - - - - - - - - - - - - -

本文算法 96. 15 94. 50 94. 97 45 22 32. 71 21 17 18. 57 78. 72

间的中心距为 120
 

mm,如图 16 所示。 实验所处场地的

具体布局详见图 17,其整体面积大致为 4
 

m×5
 

m 的方形

区域。 在该场地内设置的障碍物均由不同规格尺寸的纸

箱构成。 开展实验时,需率先运用激光雷达设备对整个

试验区域进行全面扫描, 借助即时定位与地图构建

(simultaneous
 

localization
 

and
 

mapping,SLAM) 技术来获

取并生成相应的地图数据,以此作为后续导航操作的

基础支撑。 在此过程中,选用基于粒子滤波的栅格建

图算法( grid-based
 

fastSLAM,GMapping) 来完成地图创

建工作,最终所形成的全局地图呈现为三色样式,如

图 18 所示。
在本次实车实验中,设定移动机器人的起始位置

为原点,其目标终点坐标为( 3. 186
 

m,-2. 893
 

m) 。 针

对此次路径规划,分别采用了传统 ACO 算法以及本文

图 16　 搭载激光雷达的差速小车

Fig. 16　 Differential-drive
 

wheeled
 

robot
 

with
 

onboard
 

LiDAR

所提出的算法进行求解,相应的规划结果如图 19 和 20
所示。
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图 17　 实验场景

Fig. 17　 Experimental
 

scenario

图 18　 栅格地图

Fig. 18　 Grid
 

map

图 19　 传统 ACO 算法规划结果

Fig. 19　 Planning
 

results
 

of
 

the
 

conventional
 

ACO

经对比分析可知,本文算法所规划出的路径具备显

著优势:路径总长度为 4. 283 m,相较于传统 ACO 算法得

出的 4. 820 m,路径长度缩减了 11. 1% ;同时,在拐点数量

方面表现也较为优异,本文算法仅产生 5 个拐点,而传统

ACO 算法则多达 23 个,拐点数量减少了 78. 2% 。 在真

实实验环境下,本文算法依然能够保持良好的性能表现,
具有一定的实用性。

为了验证本文算法在具有动态、静态新增障碍物条

图 20　 本文算法规划结果

Fig. 20　 Results
 

planned
 

by
 

the
 

proposed
 

method

件下的鲁棒性,本文设置了以下实验:在已经创建完成的

栅格地图中新增一个静态障碍物一个动态障碍物,算法

的运行情况如图 21 ~ 25 所示。

图 21　 栅格地图

Fig. 21　 Grid
 

map

图 22　 Rviz 中加载的地图

Fig. 22　 Maps
 

loaded
 

in
 

Rviz

图 21 ~ 25 中实线线框圈出的障碍物为新增静态障

碍物,虚线线框圈出的障碍物为新增动态障碍物,虚线为

小车的移动路线,实线为本文算法计算得到的路径,从图

中可以看到,即使地图中存在新增静态或存在动态障碍
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图 23　 检测到新增静态障碍物

Fig. 23　 New
 

static
 

obstacles
 

detected

图 24　 检测到新增动态新增障碍物

Fig. 24　 New
 

dynamic
 

obstacles
 

detected

图 25　 到达目标点附近

Fig. 25　 Arrive
 

near
 

the
 

target
 

point

物,小车依旧可以导航成功,本文算法具有较好的鲁

棒性。

6　 结　 　 论

　 　 传统 ACO 算法参数敏感、搜索效率低,且难以兼顾

路径长度与平滑性。 为此,本研究提出了一种集成异质

自适应机制、角度惩罚因子与精英策略的改进 ACO 算

法。 通过构建异质—同质双种群协同进化框架,增强全

局探索与局部开发能力;引入方向感知的角度惩罚因子,
有效抑制无效拐弯;采用精英路径加权沉积策略,加速正

反馈收敛过程。
仿真与实验结果表明,所提算法在多种栅格环境

(20×20 ~ 50×50)中均表现出优异性能。 与原始 ACO 及

文献[9]算法相比,本文算法在路径长度、拐点数量和收

敛迭代次数等方面均有显著提升。 在 50×50 地图中路径

长度缩短 8. 4% ,拐点减少 66. 6% ,迭代次数降低 82. 6% ;
真实场景实验也验证了其有效性,路径长度减少 11. 1% ,
拐点下降 78. 2% 。 结果表明,本算法具有良好的稳定性、
实用性和泛化能力。

本研究的主要创新体现在:1)
 

提出异质自适应种群

调度机制,平衡探索与开发矛盾;2)
 

融合方向感知与角

度惩罚策略,显著提升路径平滑性;3)
 

设计精英加权信

息素更新方式,改善收敛效率。 研究成果不仅为 ACO 路

径规划提供了新思路,也为 AGV、移动机器人等智能系

统的工程应用提供了可靠的技术支撑,具备较高的理论

价值与良好的应用前景。
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