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Heterogeneous adaptive ACO . Integration of angle penalty and elite strategy

Zeng Xianyang, Liang Yuansheng, Yu Hao,Liu Chang, Yang Hongli

( Engineering Training Center & School of Applied Technology, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract : This paper addresses the limitations of traditional ant colony optimization ( ACO) in path planning, such as slow convergence,
susceptibility to local optima, and numerous path inflection points, by proposing an improved ACO algorithm. This algorithm integrates a
heterogeneous adaptive mechanism, angle penalty, and an elite strategy, and systematically verifies its generalization performance. By
constructing a heterogeneous-homogeneous dual-population collaborative architecture, combining two ant populations with different
characteristics , the algorithm's global search capability in various environments is enhanced, effectively avoiding premature convergence.
Introducing a direction-aware angle penalty factor avoids unnecessary path inflection points, optimizes path smoothness, and improves the
algorithm’s adaptability to complex terrain by adding angle penalties to path planning. The elite-weighted pheromone update strategy
allows the influence of excellent solutions to be more fully reflected in the pheromone update process, accelerating the convergence
process and improving stability. In the comparative experiment of multi-scale grid maps, the algorithm proposed in this paper showed
excellent generalization performance and robustness: in a complex 50X50 environment, compared with the traditional ACO algorithm, the
path length was reduced by 14. 1% and the inflection point was reduced by 69. 4% ; compared to existing improved algorithms, the path
length was shortened by 8. 4% , the inflection point was reduced by 66. 6% , and the number of iterations was reduced by 82. 6% . The
real vehicle experiment of the automated guided vehicle (AGV) further verified the generalization ability of the algorithm in the real
scene, the path length was shortened by 11. 1% , and the inflection point was reduced by 78.2%. This study innovatively proposed a

population heterogeneous adaptive scheduling mechanism, a direction-aware angle penalty strategy, and an elite pheromone weighted
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update method, which significantly improved the generalization performance of the ACO algorithm and provided reliable technical support

for the practical application of mobile robot navigation systems.

Keywords : ant colony optimization; path planning; generalization performance; heterogeneous population; angle penalty
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Table 2 Experimental results in the mapl environment

He K BRI P

Rk moMi T ;‘fjf Rkl FUME P gfjﬁ R FME P ;’?ﬁf e
148 ACO 30.041 28.627 29.500 2.96 61 12 18.90 94. 4 13 6 9.3 55.9 27.09
SCHR[ 9] 28.627 28.627 28.627 0.00 30 16 25.90 95.9 11 5 7.9 48. 1 25.68
ARUE 28.627 28.627 28.627 2 1 1.05 5 4 4.1 22.86
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Table 3 Experimental results in the map2 environment
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Table 4 Experimental results in the map3 environment
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Table 5 Experimental results in the map4 environment
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Table 6 Experimental results in the map5 environment
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Fig. 16 Differential-drive wheeled robot with onboard LiDAR
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Fig.20 Results planned by the proposed method
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Fig.23 New static obstacles detected

P 24 R B I S AT HE B
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