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摘　 要:随着现代工业和科学研究对测量精度的要求日益提高,测量不确定度的评定成为确保产品质量和优化生产流程的重要

环节。 传统的测量不确定度评定方法在静态、线性系统中应用广泛,但在面对高维、非线性或动态系统时逐渐暴露出局限性。
近年来,非统计方法为复杂系统的不确定度评定提供了有效的补充,特别是神经网络技术,凭借其强大的数据处理能力和非线

性建模特性,已成为不确定度评估的重要工具。 首先,系统回顾了统计方法(测量不确定度表述指南及其蒙特卡洛方法)与非

统计方法(如贝叶斯推断、灰色评定、模糊评定及最大熵评定)在测量不确定度评定中的基本原理、优势、局限性及典型应用场

景。 其次,进一步探讨了各类方法与机器学习相结合的最新研究进展与发展趋势。 特别关注新兴的基于神经网络的不确定度

间接评定方法,包括确定性模型、贝叶斯神经网络及集成学习方法,分析了不同建模与评估策略在复杂非线性系统中的应用潜

力与局限性。 最后,对现有测量不确定度评定方法的适用场景进行了归纳与比较,并展望了未来的发展方向。 在保证评定效率

与可靠性的前提下,不同方法的融合有望进一步提升复杂测量系统的建模能力与不确定度评估的可信度,降低对大量测量数据

的依赖,以满足现代工业与科学研究中日益复杂的测量需求。
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Abstract:
 

As
 

the
 

demand
 

for
 

measurement
 

accuracy
 

intensifies
 

in
 

modern
 

industry
 

and
 

scientific
 

research,
 

the
 

evaluation
 

of
 

measurement
 

uncertainty
 

has
 

become
 

a
 

crucial
 

component
 

in
 

ensuring
 

product
 

quality
 

and
 

optimizing
 

production
 

processes.
 

Traditional
 

methods
 

for
 

assessing
 

measurement
 

uncertainty
 

are
 

widely
 

applied
 

in
 

static
 

and
 

linear
 

systems
 

but
 

have
 

shown
 

limitations
 

when
 

dealing
 

with
 

high-dimensional,
 

nonlinear,
 

or
 

dynamic
 

systems.
 

In
 

recent
 

years,
 

non-statistical
 

methods
 

have
 

effectively
 

complemented
 

uncertainty
 

evaluation
 

for
 

complex
 

systems.
 

In
 

particular,
 

neural
 

network
 

techniques,
 

with
 

their
 

powerful
 

data
 

processing
 

capabilities
 

and
 

nonlinear
 

modeling
 

capabilities,
 

have
 

become
 

essential
 

tools
 

for
 

uncertainty
 

evaluation.
 

This
 

study
 

provides
 

a
 

comprehensive
 

review
 

of
 

statistical
 

methods,
 

including
 

the
 

Guide
 

to
 

the
 

Expression
 

of
 

Uncertainty
 

in
 

Measurement
 

and
 

the
 

Monte
 

Carlo
 

method,
 

as
 

well
 

as
 

non-
statistical

 

approaches
 

such
 

as
 

Bayesian
 

inference,
 

grey
 

evaluation,
 

fuzzy
 

evaluation,
 

and
 

maximum
 

entropy
 

evaluation.
 

The
 

fundamental
 

principles,
 

advantages,
 

limitations,
 

and
 

typical
 

application
 

scenarios
 

of
 

each
 

method
 

are
 

systematically
 

analyzed.
 

In
 

addition,
 

the
 

recent
 

trend
 

of
 

integrating
 

these
 

uncertainty
 

evaluation
 

methods
 

with
 

machine
 

learning
 

is
 

discussed.
 

Particular
 

attention
 

is
 

given
 

to
 

emerging
 

neural
 

network-based
 

indirect
 

evaluation
 

methods,
 

including
 

deterministic
 

models,
 

Bayesian
 

neural
 

networks,
 

and
 

ensemble
 

learning
 

frameworks.
 

The
 

modeling
 

and
 

evaluation
 

strategies
 

of
 

these
 

approaches
 

are
 

examined
 

in
 

the
 

context
 

of
 

complex
 

nonlinear
 

systems,
 

highlighting
 

their
 

potential
 

and
 

current
 

limitations.
 

Finally,
 

the
 

applicability
 

of
 

various
 

uncertainty
 

evaluation
 

methods
 

is
 

summarized,
 

and
 

future
 

research
 

directions
 

are
 

outlined.
 

The
 

study
 

suggests
 

that
 

the
 

integration
 

of
 

multiple
 

evaluation
 

paradigms
 

can
 

enhance
 

the
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modeling
 

capability
 

and
 

reliability
 

of
 

uncertainty
 

estimation
 

in
 

complex
 

measurement
 

systems,
 

reduce
 

dependence
 

on
 

large
 

data
 

samples,
 

and
 

better
 

address
 

the
 

increasingly
 

intricate
 

measurement
 

requirements
 

in
 

modern
 

industry
 

and
 

scientific
 

research.
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0　 引　 　 言

　 　 在现代工业生产和科学研究中,测量是确保产品质

量、提升生产效率以及实现技术创新的基础性活动。 测

量结果的准确性直接影响到工艺控制、设备优化和产品

性能。 然而,任何测量都不可避免地受到诸多不确定因

素的影响,这使得测量结果的不确定度评定成为测量工

作中不可或缺的一部分[1] 。 对测量不确定度的科学评

定,不仅能够提升测量结果的可信度,还能为后续决策和

过程优化提供坚实依据。 分析系统测量不确定度能够明

确测量过程中各类误差的来源和影响,帮助分析系统的

性能和可靠性,为量化和控制测量中存在的各种误差和

偏差提供了方法论基础,进而为改进测量方法、优化测量

系统提供理论指导[2-3] 。 通过不确定度评定,还可以实现

不同测量方法和结果之间的标准化比较,为工业生产和

国际贸易中的质量管理和技术规范提供支撑。
测量不确定度理论大体上可以分为统计方法和非统

计方法两大体系[4] 。 统计方法以概率统计为基础,要求

对系统的测量过程及各影响因素的概率分布有充分了

解,并能够通过大量的测量数据对不确定度进行传递。
主要包括传统的测量不确定度表达指南( guide

 

to
 

the
 

expression
 

of
 

uncertainty
 

in
 

measurement,
 

GUM)和蒙特卡

洛方法(Monte
 

Carlo
 

method,
 

MCM)。 这两种方法由国际

计量局及其他国际计量组织联合发布,已成为国际公认

的测量不确定度评定标准,广泛应用于工业、科研和计量

领域[5-6] 。
然而,随着测量对象的复杂性增加以及大数据技术

的发展,统计方法逐渐暴露出局限性。 特别是在处理复

杂系统、信息不足、动态特性显著或测量环境复杂等情况

下,传统的 GUM 和 MCM 可能无法有效提供可靠的不确

定度评定[5-7] 。 例如,在高维复杂系统中,MCM 需要大量

的计算资源,而 GUM 方法则要求明确的概率分布假设,
对于非线性或动态系统的适应性较差[8] 。

随着数十年来计量科学的研究与发展,传统 GUM 方

法所带来的局限性逐渐被突破,出现了一些非统计方法,
为测量不确定度评定提供了更多方法选择与支持,成为

测量不确定度评定方法的重要补充。 贝叶斯推断[9-10] 可

以为复杂系统建立概率传递模型;灰色系统理论[11-12] 无

需依赖大量样本或复杂的概率模型,并在非线性系统建

模与不确定度评估方面表现出众;最大熵方法[13-14] 可以

在测量系统信息不完整或概率空间不完备的条件下进行

概率估计;模糊评定法[15-16] 在数据不完整或不确定性较

高的测量系统中展现出独特的优势;神经网络间接评定

方法[17-20] 则是在具有复杂非线性以及动态特征的系统建

模中展现出显著优势,
 

能够有效捕捉输入与输出之间的

高度非线性关系,同时适应动态系统随时间变化的特性,
为测量不确定度的评估提供了强大的工具支持。

目前已经有一些国内外学者对测量不确定度评定方

法进行了总结概述。 陶猛等[17,21] 对目前主要的几种评定

方法以及其应用进行了详细的总结;Da
 

Silva
 

Hack 等[18]

总结了 2004 年到 2010 年间测量不确定度评定的相关方

法及应用;Kusnandar 等[8] 则是对 2011 年至 2022 年的文

献进行了总结,并着重比较了 GUM 与 MCM 的优劣。 然

而,这些综述并未对非统计方法进行详细概述,同时也忽

略了对神经网络间接评定法这一重要方法的总结。 本研

究系统梳理了国内外学者在测量不确定度评定方面提出

的理论方法,比较了统计方法与非统计方法的优势和不

足,并对不同方法的适用场景进行了详细阐释。 特别是

针对近年来出现的神经网络间接评定方法,结合未来发

展的趋势,进行了较为完整的综述,旨在为复杂系统的测

量不确定度评定提供理论参考和实践指导。

1　 统计方法

　 　 GUM 方法[22] 和 MCM[23] 是目前测量不确定度评定

的两种主要的统计方法,不同方法的总结如表 1 所示。
GUM 方法基于误差传播理论,提供了一个系统的框

架来分析和评定测量不确定度。 评定流程如图 1 所示,
包括:分析测量不确定度的来源,评定各来源的标准不确

定度分量,分析各不确定度分量之间的相关性,最终通过

合成不确定度分量计算合成标准不确定度及扩展不确定

度并给出不确定度报告[1] 。 在 GUM 方法中,不确定度按

评定方法分为 A 类不确定度和 B 类不确定度。 A 类不确

定度通过对一系列观测数据的统计分析获得标准差,其
计算方法包括贝塞尔公式法、别捷尔斯法、极差法等;
B 类不确定度则基于经验或其他信息,如历史数据、相关

经验或技术指标,来评定其概率分布。 通过方差合成定

理合成 A 类和 B 类不确定度,并通过包含概率确定包含

因子,并最终计算出扩展不确定度[5] 。
GUM 方法适用于静态线性或近似线性模型,具有清

晰的理论基础,能够为测量不确定度提供标准化和系统

化的评定流程。 然而,当面对非线性模型或复杂系统时,
GUM 方法的适用性受到限制,因为灵敏系数、输入量
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　 　 　 　 表 1　 测量不确定度评估方法

Table
 

1　 Measurement
 

uncertainty
 

evaluation
 

methods

方法 基本原理 适用范围 优势 局限性

GUM[5]

基于误差传播理论,使用标准不

确定度分量和方差合成定理,通
过统计分析计算不确定度

适用于静态、线性或近似

线性测量系统

理论基础清晰,适用于常规

的线性测量系统,易于实施

和标准化

1. 不适用于复杂的非线性系统

或多变量模型;
2. 对数据量要求高

MCM[6]

对系统模型随机采样生成大量

样本,以逼近后验分布或目标分

布,进行不确定度评估

广泛适用于静态和动态系

统,特别是非线性和高维

问题

不依赖于线性假设,能够处

理复杂的非线性模型和多

变量分布

1. 计算成本高;
2. 需要已知系统模型;
3. 收敛速度较慢,效率低

贝叶斯推

断法[9]

通过先验分布和观测数据,利用

贝叶斯定理更新后验分布,从而

评估系统的不确定性

适用于静态与动态系统,
线性与非线性问题,以及

测量数据稀缺的系统

能够融合先验信息,适应复

杂模型,提供系统的概率描

述,具有动态调整的能力

1. 先验选择敏感;
2. 计算开销大,尤其在高维参数

空间中;
3. 大规模数据可能需要复杂的

采样技术

灰色评定

法[11]

基于灰色系统理论,通过对系统

内缺乏完全信息的数据进行建

模和分析,进行不确定度评估

适用于信息不完整或模糊

的静态与动态系统,尤其

是在小样本或缺乏完整数

据时

能有效处理信息不完整或

不确定的情况,适应性强

1. 对系统假设依赖较大;
2. 缺乏明确的数学模型;
3. 不适用于数据量较大的系统

 

最大熵评

定法[13]

最大熵方法基于信息理论,通过

最大化熵(即最小化信息缺失)
来推断系统的概率分布,进而评

估不确定性

适用于未知概率分布或信

息不完全的系统,尤其是

静态系统

能够在信息不足的情况下

提供最为客观的分布估计,
不依赖于过多的假设

1. 对已知数据的分布假设较为

敏感;
2. 对动态或高维问题时可能较

为复杂

模糊评定

法[15]

利用模糊逻辑理论,通过模糊集

合和隶属度函数表示不确定性,
进行系统不确定度评估

适用于静态和动态系统,
特别是具有模糊性或不确

定性较高的测量问题

能够处理不确定性和模糊

性,适应性强,尤其对定性

数据有优势

1. 缺乏严格的理论框架;
2. 计算复杂性高;
3. 且对隶属度函数的选择敏感

神经网络间

接评定法[17]

神经网络拟合输入输出关系,通
过评估网络的输出不确定性来

量化测量系统的不确定度

适用于静态和动态系统,
特别是非线性系统

能有效捕捉复杂非线性关

系;无需显式建模,自动从

数据中学习;小样本数据建

模能力

1. 依赖数据质量和数量;
2. 缺乏物理解释;
3. 不确定度评估困难

之间的相关性以及有效自由度难以确定,从而影响了评

估结果的可靠性[5] 。
与 GUM 方法相比,MCM[24] 不依赖于线性假设,能够

灵活地处理非线性模型和复杂分布的系统。 作为一种基

于随机抽样的数值模拟技术,MCM 通过大量随机样本逼

近目标分布,在高维复杂系统的测量不确定度评定中表

现出显著优势[6] 。 MCM 的核心思想是通过随机抽样生

成大量样本,并利用这些样本对系统的参数或输出进行

近似计算,模拟待求参数的统计特性。 其评定步骤包括:
1)建立系统模型,建立测量系统的数学模型并给定输入

量的概率密度函数;2)输入数据采样并计算输出,根据已

知的概率分布对系统的输入变量进行随机抽样,生成大

量样本数据,并通过系统模型得到大量输出结果;3)进行

统计分析并报告测量结果。 MCM 的优势在于其灵活性,
能够适应非线性及复杂分布系统的不确定度评定,且便

于计算机编程实现,因此广泛应用于航空航天[25] 、机械

设计[26] 和临床医学[27] 等领域。
MCM 的主要局限性在于计算成本高和收敛速度较

慢,这些因素限制了其在大规模数据或实时应用中的广

泛使用。 为了解决这些问题,近年来的研究提出了若干

改进方案,如自适应 MCM 和分层 MCM。 Gabri􀆧 等[28] 提

出利用自适应 MCM 通过非局部过渡核来增强 MC 采样,
显著提高了算法效率;Taverniers 等[29] 提出的分层 MCM
通过将多级 MCM 与输入样本空间的分层采样相结合,减
少了对复杂分布样本的需求,特别在高维或非均匀分布

的情况下展现出显著优势。 此外,叶苗[30] 利用 Sobol 序
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图 1　 基于 GUM 的测量不确定度评定流程

Fig. 1　 Flowchart
 

of
 

measurement
 

uncertainty
 

evaluation
 

based
 

on
 

GUM

列等确定性采样点替代随机采样,提出了准蒙特卡洛方

法,用于透镜焦距数据误差分析,从而提高了测量不确定

度的可靠性,提高计算稳定性。 这些改进方案有效提升

了 MCM 的效率和稳定性,推动了其在复杂系统测量不确

定度评定中的应用。
总的来说,尽管 MCM 存在效率较低的问题,并且在

多变量模型具有复杂分布和强相关性时,抽样分析变得

困难,甚至可能无法实现,但它仍然是 GUM 方法的重要

补充,能够在不依赖于传统线性假设的前提下,对复杂的

非线性和高维问题进行灵活处理,为非线性模型的测量

不确定度评定提供了重要的参考方法。

2　 非统计方法

2. 1　 贝叶斯推断法

　 　 贝叶斯推断是一种基于贝叶斯定理的方法,通过结

合先验知识和观测数据,得到未知参数的后验分布[9,31] ,
从而使用数值方法如马尔可夫链蒙特卡罗法[32] ,从后验

分布中采样,以计算输出量的不确定度。 与 GUM 不同,
贝叶斯方法以观测数据为基础,基于贝叶斯统计而不是

经典统计学,将所有的未知参数视为随机变量,且都具有

一定分布。 而在 GUM 系列文件中,一般将未知的被测量

视为一个确定性值[33-34] ,测量不确定度主要来自于误差

传播和统计分析。 因此,与陶猛等[17] 的研究一致,本研

究将贝叶斯方法分类为非统计方法指的是非经典统计学

方法。 其不确定度计算的主要流程为:
首先定义系统模型以描述输入变量 x 和输出被测变

量 y 之间的关系,即:
y = f(x,θ) + ε (1)
其中, ε 表示误差项,通常假设其服从正态分布,即

ε ~ N(0,σ2)。 然后利用先验知识(如历史数据或领域

专家判断),为模型参数 θ设定一个先验分布 g(θ),
 

用于

表示在没有观测数据时参数的分布知识。 假设观测数据

{x i,y i}( i = 1,2, …,n) 是独立同分布的, 则似然函数

g(y θ) 如式(2) 所示,表示给定参数 θ 下得到观测数据

的概率。

g(y θ) = ∏
n

i = 1
g(y i x i,θ) (2)

由于 y i 同样服从正态分布,则:

g(y θ) = ∏
n

i = 1

1
s 2π

exp -
(y i - f(x i,θ)) 2

2s2( ) (3)

其中,观测值 y i 的样本均值 􀭰y 和样本标准差 s 为:

􀭰y = 1
n ∑

n

i = 1
y i (4)

s = 1
n - 1∑

n

i = 1
(y i - 􀭰y) 2 (5)

根据贝叶斯定理,后验分布 g(θ y) 是先验分布和似

然函数的更新结果,即:

g(θ y) = g(y θ)g(θ)
g(y)

(6)

其中,归一化常数 g(y) 表示观测数据的总可能

性,即:

g(y) = ∫g(y θ)g(θ)dθ (7)

结合后验分布和系统模型,被测量的后验预测分

布为:

g(y x) = ∫g(y x,θ)g(θ y)dθ (8)

被测量的估计值 ŷ 及标准测量不确定度 u 可以表

达为[35] :

ŷ = E[g(y x)] = ∫yg(y x)dθ (9)

u = Var[g(θ x,y)] = ∫(y - ŷ) 2g(y x)dθ

(10)
由式(9)和(10)评定过程可以看出,先验分布的选择

以及观测数据量对于不确定度的评定结果相当重要[36-37] 。
当 n 增大时,评定结果对先验信息的容错率增高,并且当

获得新的观测数据时,可以通过迭代的方式在上一次评定

的基础上对被测量进行不确定度评定。 贝叶斯方法通过

将历史数据、专家经验与观测数据有机结合,为测量不确

定度的评估提供了灵活的框架。 由于其不依赖于特定的

测量模型,贝叶斯方法在非线性关系显著以及具有复杂相

关性的测量系统中表现出独特的适用性和优势。
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在实际测量和校准工作中,贝叶斯方法的应用常常

面临先验分布选择和后验分布解析的困难。 特别是在对

测量系统进行重复校准或不确定度评定时,常常缺乏足

够的先验信息,这可能导致只能采用无信息先验或共轭

先验。 在建立贝叶斯模型时,通常依赖经验或有限的测

量数据来假设先验信息[38] 。 例如,刘昊邦等[39] 在舰空导

弹命中概率试验中,面对小样本试验数据量不足的问题,
通过选择正态-逆伽马分布作为先验,从而弥补了数据不

足的限制。 然而,不合理的先验分布可能对后验分布产

生过大的影响,导致评估结果产生较大偏差。 特别是当

数据量较小时,不恰当的强信息性先验可能会抑制数据

对后验分布的贡献,导致结果偏离真实值。 为此,王军

等[40] 提出了采用稳健统计理论构造先验,选取信息性弱

但具有约束力的正态分布或正则化先验(如 Laplace 先

验[40]和 Ridge 先验[41] ),以提高结果的鲁棒性[42] 。 在稳

健统计的基础上,徐永智[43] 在评估滚动轴承摩擦力矩的

不确定度时,结合中位数估计与 Huber
 

M 估计,分析了时

间序列数据的稳健性,并构建了贝叶斯先验,从而有效减

小了置信水平与稳健数据边界值主观确定的误差。
此外,选择非共轭先验分布可能导致后验分布难以

解析,从而增加计算复杂性,尤其是在高维参数空间

中[44] 。 例如,Jeffreys 先验常作为无信息性先验使用,但
在多参数情况下,其表现通常不理想,且可能导致不准确

的结果[45] 。 殷泽凯等[46] 通过使用 Jeffreys 先验描述工程

机械产品的复杂退化过程,并证明在先验条件独立的情

况下,Jeffreys 先验可能会导致测量不确定度评定结果偏

小。 在雷达性能指标估计中,杨磊等[47] 考虑到先验知识

与观测数据之间可能存在的非共轭特性,提出了分层贝

叶斯模型,并采用贝叶斯变分推理法来计算后验分布,从
而显著降低了评价成本,提高了效率。

另一方面,后验分布的计算复杂性随着参数维度的

增加而指数级增长,因为需要在高维空间中进行积分以

归一化分布。 这种计算通常无法通过解析方法直接完

成,尤其当参数之间存在复杂相关性时[48-49] 。 传统的采

样方法(如 Metropolis-Hastings 算法)效率较低,可能导致

采样结果无法充分覆盖整个参数空间,从而出现计算收

敛缓慢的问题[50] 。 为提高效率,Karimi 等[51] 提出了结合

局部和非局部二阶导数信息的哈密顿蒙特卡洛方法,这
一方法成功应用于贝叶斯推理和非线性逆问题,显著提

升了后验分布近似求解的效率和准确性。 此外,随着机

器学习在高维问题求解中的优异表现,Grosnit 等[52] 结合

变分自动编码器与深度学习(deep
 

learning,
 

DL),在高维

和结构化输入空间中执行贝叶斯优化,展示了机器学习

在求解高维贝叶斯后验分布问题中的巨大潜力。
这些研究表明,在贝叶斯方法应用中,合理选择先验

分布、优化采样方法以及结合现代机器学习技术,能够有

效提升贝叶斯推断的效率和准确性,为复杂、动态系统的

不确定度评定提供强有力的支持。
2. 2　 灰色评定法

　 　 灰色评定法基于灰色系统理论,尤其适用于信息不

完全或数据量有限的测量系统。 相比于传统方法,灰色

评定法无需依赖大量样本或复杂的概率模型,而是以数

据序列的累加生成和简单代数运算为核心,避免了繁琐

的数学推导和数值求解。 其灵活的建模框架使其能够通

过与神经网络或支持向量机等先进技术相结合,进一步

拓展适用范围,并在增强非线性建模能力方面展现出显

著的潜力。
1983 年邓聚龙教授[53]在研究小样本和不确定性问题

时,提出了灰色系统理论。 该理论旨在解决信息不完全或

不确定性较大的系统分析问题,特别适用于数据有限或样

本不足的场景。 灰色系统理论的核心思想如图 2 所示。

图 2　 灰色评定法

Fig. 2　 The
 

grey
 

evaluation
 

method

灰色评定法是数据处理方法中的累加生成法,即对

同一个变量 x 进行 n 次重复测量时,按照测量次数 k(k =
1,2,…,n) 排序,测量结果可以合并为数据序列 X0,即:

X0 = (x0(1),x0(2),…,x0(k)) (11)
根据灰色理论[11] ,经过一次累加后,生成的新数列

X1 为:
X1 = (x0(1),x0(1) + x0(2),…,x0(1) + x0(2) +… +

x0(k)) (12)
理想情况下,序列 X1 是一组等差递增数列,而实际

测量过程由于测量误差的存在,实际值(曲线 2) 会一定

程度上偏离理想值(虚线 1),如图 2 所示,其中 Δ(k) 表

示二值的差异程度。 在此基础上,朱坚民等[11,54] 总结并

提出了测量不确定度的灰色评定法,通过定义Δ(k) 与样

本标准差 s 之间的关系对测量不确定度进行评定,即:
Δmax = max(Δ(1),Δ(2),…,Δ(n)) (13)
样本标准差 s 越大, 曲线 2 弯曲程度越大,Δmax / n

越大,即:
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s =
cΔmax

n
(14)

其中, c 为灰色常系数,可以由灰色模型或其他方法

求出。
近年来,灰色评定法在测量不确定度评定中的应用

虽取得进展,但仍存在一些局限性和挑战。 Xia 等[55] 通

过制定测量结果的评价指标,提出了灰色自助法,解决了

动态测量过程中不确定性评价的一些问题;为了产生实

时的评定结果,Song 等[12] 使用多项式回归实时拟合交通

流趋势函数,动态生成上限和下限数据序列,提出了一种

自适应灰色预测区间模型来量化实时交通状况的不确定

性;面对小样本问题,赵远方等[56-57] 提出了通过改进的合

成少数类过采样技术以及支持向量回归技术合成灰色小

样本数据集,解决了在极小样本下应用灰色评定法导致

相对误差过大的问题;Cheng 等[58] 采用改进的灰度法评

估工业机器人的位置不确定度,表明了该方法在极小样

本下计算的标准差具有更高的精度;针对复杂系统的多

变量输入问题,刘寒冰等[59] 利用多变量灰色模型 MGM
(1,

 

n)实现对路基中相互影响的多个监测点变形预测模

型的建模和预测;熊远南[60] 以燃煤电厂水务系统为研究

对象,基于灰色理论和多元非线性回归分析,分别建立影

响水量各因素的灰色预测模型 GM(1,1),实现了对灰色

多变量系统的不确定度评定。
随着机器学习和 DL 技术的快速发展,灰色系统的

数学基础薄弱和非线性适应能力不足的问题得
 

到了有

效地解决[61-62] 。 王中宇等[61] 提出了一种基于径向基函

数神经网络(radial
 

basis
 

function
 

neural
 

network,
 

RBFNN)
的虚拟仪器测量模型,并结合灰色评定法用于评估各误

差源之间的相关系数,有效地克服了传统测量不确定度

评定方法对测量方程显式性、解析性和线性化的限制,在
处理复杂测量系统的不确定性问题中具有显著优势;
Wang 等[63] 提出一种基于强化学习的灰色预测方法并应

用在网络流量传输问题上,引入校正因子提高了灰色模

型的小样本预测性能;与灰色理论的结合使得神经网络

建模更具泛化性和稳健性,Zhang 等[64] 利用灰色系统的

小样本建模功能来增强神经常微分方程的整体泛化性,
有效地增强了其对有限非线性数据的预测能力。

然而,灰色评定法的适用性主要集中于测量系统的

数据量有限、信息不完全以及系统特性相对简单的场景。
在面对大样本、高维复杂系统或强噪声干扰的情况下,其
适用性可能受到显著限制。 因此,为提高不确定度评定

的准确性和可靠性,应结合其他方法或选择更为适配的

替代技术。 未来灰色评定法有望在不确定性评价领域取

得进一步突破,引入机器学习技术,优化数学模型,开发

混合评价框架,扩大其在多变量应用领域的适用性。 这

将在扩展其在高维、动态和非线性场景中的应用潜力的

同时,为复杂系统的测量不确定性评估提供更加高效和

灵活的解决方案。
2. 3　 模糊评定法

　 　 模糊评定法通过结合定性评价与定量分析,利用模

糊数学理论有效处理不确定性和模糊性问题,尤其在数

据不完整或不确定性较高的测量系统中展现出独特的优

势。 其灵活的数学框架能够同时处理随机和非随机效

应,并通过自定义隶属函数和模糊规则适应不同场景需

求。 此外,与现代技术的结合进一步拓展了其应用范围,
使其在非线性、动态系统及复杂多源数据分析中表现出

显著的适用性。
模糊数学的基础由 Zadeh[65] 在 1965 年提出的模糊

集理论奠定。 模糊集理论是一种处理模糊性、不确定性

及不完全性问题的数学工具,通过隶属函数 μ(x) 描述元

素 x(x ∈ X) 对集合的隶属程度, 模糊集 􀭹A 是一组有

序对,即:
􀭹A = {(x,μA(x)) x∈ X} (15)
其中, μA(x)(0 ≤ μA(x) ≤ 1) 表示元素 x 在集合 A

中的隶属度, 当 μA(x) = 0, 表明 x 完全不属于集合;
μA(x) = 1,表明 x 完全属于集合。 2001 年 Mauris 等[15] 结

合模糊理论与置信区间,提出了测量不确定度的模糊评

定法。 模糊推理过程如图 3 所示。

图 3　 模糊评定法流程

Fig. 3　 Fuzzy
 

evaluation
 

method
 

flowchart
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　 　 首先,模糊化过程使用隶属度函数将清晰的输入值 x
根据不同的评价指标所定义的集合转换为不同的隶属度,
表示输入值属于每个定义的模糊集的程度;其次,对各评

价指标赋予权重 wi, 反映每个指标在整体评估中的相对重

要性。 权重通常满足如式(16)所示约束条件,即:

∑
n

i = 1
w i = 1 (16)

然后,模糊推理通过定义系统行为的模糊规则及权

重将模糊集转化为模糊输出集,即综合隶属度 􀭴y。 隶属

度函数起着至关重要的作用,在模糊化和去模糊化过程

中,它将输入空间中的每个点映射到 0 ~ 1 范围的隶属度

值。 最后,去模糊化步骤使用各种方法将模糊输出集转

换回清晰的输出值,例如质心法、最大隶属度法和加权平

均法等。 其中,质心法是一种广泛应用的标准方法,通过

计算模糊输出集的重心来获得清晰值[16] 。
在不确定度评定中,置信区间通常表示测量值在一

定概率范围内可能取值的区间范围。 而模糊集理论通过

隶属函数对置信区间进行描述,将“可能性”替换为隶属

度的形式,再通过解模糊化或以分散范围来表征不确定

度[66] 。 2005 年测量不确定度表达指南的增补版中已经

通过使用模糊变量( fuzzy
 

variable,
 

FV)和随机模糊变量

(random
 

fuzzy
 

variable,
 

RFV) 来表示测量不确定度的决

定[67] ,并且制定了完整的数学框架处理 RFV[68] 。 RFV
的方法考虑并处理了单个数学对象中对不确定度的随机

和非随机贡献,并且在非随机效应不可忽略或对不确定

度的不同贡献的了解非常有限的应用[69] 中 RFV 的完整

评定流程显示出了比 GUM 更可靠的不确定度评定

结果[70-71] 。
Ferrero 等[72] 将 RFV 方法应用于对电阻进行直流测

量的不确定性估计中,并在 2008 年提供了一种通用方法

来利用可用的相关计量信息来构建 RFV,证明其比 GUM
可以提供更好的不确定度评估的能力[73] 。 在此基础上,
蒋薇等[74] 总结了一种更一般化的不确定度评定和表示

的 RFVs 方法,系统评述了其关键技术与难点,表明 RFVs
方法在非线性测量函数中传递不确定度具有简单高效的

特点;吕晓娟等[75] 基于模糊集合理论的基本原理,提出

了一种用于新一代全球定位系统 ( global
 

positioning
 

system,GPS)测量不确定度评定的模型。 该模型以优化

理论为基础,通过最大模范数最小的逼近方法,获得了最

优解,为 GPS 测量系统中不确定度的量化提供了创新性

解决方案。 Yilmaz 等[76] 利用自适应更新中心和宽度的

隶属函数为非线性机械系统设计了稳定的速度观测器,
实现了观测器设计中改进的不确定补偿问题;Tang 等[16]

证明了模糊逻辑在解决不确定非线性系统控制问题方面

的潜力。 此外,模糊推理系统与 DL 的结合已经被证明

可以显著提高预测和分类精度,尤其是在处理不确定性、

多源 数 据 和 复 杂 模 式 识 别 等 领 域 显 示 出 显 著 的

效果[77-79] 。
模糊评定法的适用性主要集中在信息不完全或不确

定性较高的情境中,但在面对大样本、高维度、强噪声或

极端复杂系统时,其效果可能受到限制[16] 。 特别是当系

统的行为较为复杂、非线性关系较强或数据之间的依赖

性较高时,模糊评定法可能无法提供足够的精度。 此外,
模糊规则的构建和隶属度函数的选择需要经验指导,且
在一些高度复杂的应用中,规则设计和推理过程的效率

可能成为瓶颈。
今后模糊评定法的改进方向可以集中在 3 个方面:

1)通过引入机器学习和 DL 技术,实现自动化优化隶属

函数和模糊规则,以提高方法的自适应能力和精度[80] ;
2)结合大数据分析和高效计算方法,提升其在高维度和

大规模数据中的应用性能[81] ;3) 探索多方法融合策略,
将模糊评定与其他不确定度评估方法(如贝叶斯推断、蒙
特卡罗方法等)结合,形成更强大的混合评定框架,以更

好地处理复杂、不确定性强的系统。
2. 4　 最大熵评定法

　 　 最大熵评定法是一种基于熵最大化原理的不确定度

评定方法,可以简述为:在信息有限或概率空间不完备的

条件下进行概率估计时,应根据现有信息选择使得熵最

大的概率分布,即保持最大的随机性和最小的主观偏

见[82-83] 。 利用最大熵方法计算测量不确定度时的基本流

程为:
1)基于已有的测量数据或先验知识,设定不确定度

评定的约束条件。
2)Shannon 熵[84] 常被用于定义在满足已知约束条件

下,概率分布的不确定性最大化问题,对于有限区间

[ - L,L] 的连续型随机变量 X,即:

H(X) = - ∫L

-L
p(x)lnp(x)dx (17)

其中,p(x)为 X 的分布密度,假设已知约束条件为:

∫L

-L
p(x)dx = 1 (18)

∫L

-L
xp(x)dx = μ0 (19)

3)估计目标是在满足上述约束条件下,选择使得熵

H(X) 最大的概率分布 p(x) [85] 。 通常采用拉格朗日乘

数法计算 H(X) 在约束条件下的极值以得到 p(x) 的通

解,令:
∂
∂x

- ∫L

-L
p(x)lnp(x)dx - λ0 ∫L

-L
p(x)dx - 1[ ]{ -

- λ1 ∫L

-L
xp(x)dx - μ0[ ] } = 0 (20)

其中, λ0 和λ1 为拉格朗日乘子。 引入常数 c和λ,根
据式(20) 求得 p(x) 的通解为:
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p(x) = ce
-λ(x-μ0) ,　 - L ≤ x ≤ L (21)

4)结合式(21),测量不确定度为:

u = ∫L

-L
(x - μ0) 2p(x)dx (22)

最大熵方法为测量不确定度的评定提供了一种基于

信息论的有力工具,能够在缺乏完整数据的情况下,通过

最大化熵值来推导最优的概率分布。 其优势在于信息的

高效利用和对复杂系统的不确定性量化能力,但其有效

性依赖于合理的约束条件设定。 谌贝等[13] 利用最大熵

的方法对 GUM 标准中纯铜的线性热膨胀系数的实例进

行了测量不确定度评定证明了最大熵方
 

法在遵循 GUM
标准的前提下,能够更灵活地处理测量数据的不确定性

问题;刘智敏[14] 探讨了在被测量服从界限未知的均匀分

布的情形下,最大熵法应用的有效性问题;钟浩等[86] 认

为在小样本数据下,基于原点矩约束最大熵原理求得的

测量不确定度不够准确可靠,提出基于数据归一化原点

矩约束最大熵原理的小样本数据测量不确定度评定

方法。
除了 Shannon 熵,Tsallis 熵[87] 和邓熵[88] 也被广泛研

究,并被证明是处理不确定性问题的有效工具。 Jizba
等[89] 援引估计理论中已知的最大熵原理来揭示广义不

确定性原理中相关量子理论的准经典(退相干)极限与
 

Tsallis
 

的非广泛热统计学之间的联系;Gao 等[90] 研究表

明通过最大邓熵分离规则分离的基本概率分配的不确定

性大于原始概率分配的最大邓熵;为了评定随机排列集

(random
 

permutation
 

set,
 

RPS)的不确定度,Deng 等[91] 提

出了 RPS 熵,当忽略排列事件中元素的顺序时,最大
 

RPS
 

熵将退化为最大邓熵。 当每个排列事件仅限于包含

一个元素时,最大 RPS 熵将退化为最大香农熵。
总而言之,最大熵法适用于信息不完全或缺乏先验

知识的情况,尤其适合处理复杂且具有较大不确定性的

测量系统。 特别是在数据有限或概率空间不完备的情况

下,能够通过最大化熵值推导出最优的概率分布。 然而,
当约束条件设定不明确或过多时,最大熵法的有效性可

能受到限制;此外,在小样本数据或高噪声环境下,最大

熵法可能会产生偏差[92] 。 未来的研究可聚焦于优化约

束条件的设定,结合其他方法提升其对复杂非线性系统

的适应性,并探索其在量子统计和 DL 等新兴领域中的

应用,以拓展其在不确定度评定中的适用范围。

3　 神经网络间接评定法

　 　 在仪器仪表和测量 ( instrumentation
 

and
 

measure-
ment,

 

I&M)领域,DL 方法被广泛用于间接测量过程的建

模与数据反演[93] 。 作为一种强大的数据驱动建模技术,
DL 在 测 量 不 确 定 度 评 定 中 正 受 到 越 来 越 多 的 关

注[17-18,94-95] 。 其方法的应用从传统测量方法的不足入手,
通过 DL 的非线性建模能力和数据处理优势,为复杂系

统的测量不确定度评定提供了全新的解决方案。
与许多其他测量不确定度评定方法类似,DL 方法的

第 1 步是建立系统的测量模型。 然而,不同于传统的解

析建模方法,DL 通过神经网络这一通用函数逼近器,构建

系统的“黑箱”模型[96] ,因此也被称为神经网络间接评定

法。 神经网络是一种由网络参数 θ所参数化的非线性函数

fθ,其主要功能是将测量系统的输入量 xi(i = 1,…,n) 映射

到对应的输出观测量 yi(i = 1,…,n),n表示测量次数[97] 。
这一特性使得 DL 方法能够灵活地适应复杂非线性系统

的建模需求,特别是在传统方法难以刻画的高维、非线性

场景中表现出显著优势[98-99] 。
如图 4 所示,假设 ypred 表示神经网络的预测值 ypred =

fθ(x i), 网络训练的目标值为:
y i = ypred + b (23)
其中, b表示 ypred 与 y i 之间的预测偏差。 在 I&M 中,

由于测量过程中的误差和随机干扰等因素,系统输出被

测量 Y 的测量结果不是一个确定的值,而是测量结果
 

可

能发生的区间,包含被测量估计值 yest 与分散性参数,即
测量不确定度 Uest

[95,100] :
Y = yest ± Uest (24)

图 4　 测量不确定度的不同评定方法

Fig. 4　 Different
 

evaluation
 

methods
 

for
 

measurement
 

uncertainty
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　 　 其中,估计值 yest 是通过对观测值 y i 进行处理得到

的,可以看作是从 Y 中随机抽取的值。
将式(24)类比到网络模型中,可以得到:
Y = ypred ± Upred (25)
其中, Upred 表示网络预测结果的不确定度。 需要强

调的是,不同的建模方法对测量结果及其相关不确定度

产生不同的估计值,不确定度反映了测量结果的可靠性

程度。 通过比较式(24) 和(25),可以得出结论,Upred 和 b
表现出强烈的相关性,这对于通过预测误差验证不确定

度的可靠性至关重要。
与任何其他测量系统类似,DL 系统的测量不确定度主

要来源于两种效应:模型效应和随机效应[18,101] ,如图 5 所示。

图 5　 神经网络测量不确定度的组成因素

Fig. 5　 Components
 

of
 

measurement
 

uncertainty
 

in
 

neural
 

networks

　 　 模型效应是由神经网络本身的建模能力所决定的,
当网络模型的训练不足或其结构设计与实际问题的复杂

度不匹配时,可能导致模型对测量系统的映射关系描述

不充分,进而引入模型不确定度[101] ,其本质是由于神经

网络未能充分拟合实际系统的测量规律而导致的认知偏

差,可以表述为模型参数的概率分布。 另一方面,随机效

应则源于实际测量过程中固有的随机性以及噪声等因

素[102-103] 。 采集频率不当[104-105] 、环境温度变化,以及测量

仪器的有限精度[106] 等,都会导致数据采集时的不可避免

的波动,产生数据噪声。 这些随机性会导致测试数据的

波动性,并影响模型的稳定性,最终在网络预测中引入数

据不确定度[101,107] 。 综合来看,DL 系统的测量不确定度

可以理解为模型不确定度和数据不确定度的叠加效应。
在贝叶斯框架中[108] ,DL 中的数据不确定度可以形式化

为网络模型 fθ 输出预测值 ypred 的概率分布,而模型不确

定度被形式化为在给定数据集 D 下模型参数 θ 的概率

分布,即:

p(ypred x i,D) = ∫p(ypred x i,θ)üþ ýï ï ï ï

Data

p(θ D)

{ Model

dθ (26)

可以通过单一确定性方法[101,109] 、贝叶斯神经网络

方法( Bayesian
 

neural
 

networks,
 

BNN) [110-111] 、集成学习

(ensemble
 

learning,
 

EL)方法[112-113] 等对网络预测结果的

测量不确定度进行评估。

3. 1　 单一确定性方法

　 　 确定性神经网络通过一次前向传递便可估计不确定

性,其网络参数是固定的,因此每次前向传递都会产生相

同的结果[101,109] 。 其基本思想是估计深度学习模型在嵌

入特征空间中靠近测试点的训练点密度,并将该密度估

计作为认知不确定性的度量。 通过在神经网络分类器的

最后一层引入 SoftMax 函数,或在回归器中添加高斯输出

层,可以有效地捕捉样本的随机不确定性[109,114] 。
确定性方法将不确定度估计嵌入到神经网络的训练

过程中,通常通过调整网络结构或引入特定的目标函数,
将减小预测不确定度作为优化目标之一。 大多数方法考

虑了预测分布和真实分布之间的差异,遵循贝叶斯框架中

通过预测参数分布来估计不确定度的思想。 比如,Van
 

Amersfoort 等[115-116] 基于径向基函数(radial
 

basis
 

function,
RBF)神经网络,利用新颖的损失函数和质心更新方案对预

测结果的不确定度进行评估;Mukhoti 等[117]通过残差连接和

频谱归一化,在具有正则化特征空间的 SoftMax 网络中实现

了认知不确定度的评估,并在语义分割等大规模视觉任务中

取得了良好表现;Amini 等[118] 在图像深度预测中,通过在原

始高斯似然函数上加入证据先验,训练神经网络推断证据

分布的超参数,同时引入证据正则化项,有效评估了回归

问题中数据的任意不确定度和模型预测的认知不确定性。
另一方面,网络也可以通过增加额外的隐藏层来计

算不确定度。 Kanazawa 等[119] 提出通过在输入向量中插

入噪声向量的嵌入层以及选择合适的激活函数,能够以

非参数方式对复杂的多模态分布进行建模,有效评估预
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测不确定性;Liu 等[120] 通过对深度神经网络进行谱归一

化处理,并将输出层替换为高斯过程层,从而提升模型的

距离感知能力,进而有效计算预测不确定性,并在多种数

据集和任务中展现了良好的性能和优势。
与其他深度学习方法相比,确定性方法在训练和评估

效率上具有显著优势,因为它们通常只需训练一个网络模

型,而无需进行多次训练或依赖复杂的模型集成。 这使得

该方法在计算资源和时间消耗上表现出较大的优势。 然

而,确定性方法的主要挑战在于其对网络训练质量的高度

依赖,网络性能在很大程度上受到训练数据质量、数据量

以及训练过程中超参数设置和优化策略的影响,因此确定

性方法对训练数据的选择以及训练过程中的过拟合或欠

拟合问题较为敏感。 确保训练数据的代表性,并避免训练

过程中的不稳定性,是提升确定性方法性能的关键。
3. 2　 贝叶斯神经网络

　 　 BNN 通过为模型参数引入概率分布来量化不确定

度,其核心思想是在传统神经网络的权重参数上构建贝

叶斯分布。 具体来说,BNN 中的权重参数 θ 被建模为服

从高斯分布的随机变量而不是固定值,如图 6 所示,假设

其分布为 p(θ)。 目标是通过训练数据 D = {(x i,y i)} N
i = 1

学习参数的后验分布 p(θ D), 并通过式(25)计算预测

值的概率分布来估计测量不确定度。

图 6　 贝叶斯神经网络结构

Fig. 6　 Structure
 

of
 

Bayesian
 

neural
 

networks

Zhang 等[121] 在土壤特性预测模型的建模中采用了

变分推断方法来估计模型的预测不确定性,成功地量化

了模型在不同输入条件下的预测可靠性。 这一方法不仅

有效应对了复杂系统中的噪声和不完全数据问题,还为

岩土工程设计提供了更加可靠的决策支持,基于 BNN 的

预测框架展示了其在岩土工程领域中的巨大应用潜力;
李明轩等[110] 在预测测井渗透率参数的研究中,将数据分

布变换与 BNN 相结合,通过变分推断求解模型的后验分

布,从而实现了对渗透率的高精度预测。 研究表明,该方

法预测的渗透率与盲井的真实渗透率高度吻合,验证了

其在实际应用中的有效性和可靠性。 对于小样本问题,
Schodt[122] 提出了一种基于无迹变换的方法,仅用 3 个确

定性样本传播统计矩,成功实现了对具有任意非线性层

的 BNN 的高效推断;为了提高 BNN 的物理可解释性,
Izzatullah 等[123] 提 出 将 物 理 信 息 神 经 网 络 ( physics-
informed

 

neural
 

networks,
 

PINNs)与 BNN 相融合,来预测

地震的震中位置,并利用拉普拉斯方法近似后验分布,实
现不确定度的传播。

采样技术作为贝叶斯推理方法的一种,已广泛应用

于深度学习中的不确定性量化与模型推理。 MCM 是一

种高效的采样技术,通过随机抽样生成样本来近似计算

后验分布。 然而,传统 MCM 在深度学习模型中的计算开

销较大,尤其是在处理大规模数据集或复杂神经网络时,
计算效率成为其应用的瓶颈。 为了解决这一问题,研究

者提出了 MC
 

Dropout 方法,这是一种结合 Dropout 技术

的高效采样方法[124-125] 。 MC
 

Dropout 通过将 Dropout 作

为正则化项引入神经网络训练过程中,随机丢弃部分神

经元,使每次前向传播时网络结构有所不同。 这一过程

可以视为伯努利分布的随机变量,其概率由 Dropout 率决

定。 通过这种方式,MC
 

Dropout 在不增加计算复杂度的

情况下,近似实现变分推理,从而为 BNN 提供有效的后

验分布估计。 通过启用 Dropout 并进行多次前向传递,从
而生成多个网络输出,即:

p(ypred x,D) ≈ 1
T ∑

T

i = 1
p(ypred x,θi),

 

θi ~ q(θ)

(27)
其中, T 为采样次数,这些输出的平均值提供了对模

型预测的点估计,而其方差则反映了预测的不确定度。
在应用方面,Gal 等[124] 利用 Dropout 近似贝叶斯推

理,并将方法应用在二氧化碳浓度检测及太阳辐照度检

测问题上,推动了深度学习在处理不确定度方面的发展;
而后 Gal 等[125] 提出了离散 Dropout,允许网络自动调整

Dropout 率,在计算机视觉上的应用表明这种方法大大提

高了模型的效率以及不确定度的可靠性;朱挺等[126] 结合

BNN 和长短期记忆网络,对钢铁轧制流程中的热轧轧辊

剩余寿命进行了动态测量不确定度预测;Feng 等[127] 针

对条纹投影成像技术,利用 Dropout 实现贝叶斯卷积神经

网络,不仅从单个条纹图案中检索相位,而且还生成描绘

像素置信度的不确定性图,表明了 BNN 在解决光学成像

问题不确定度评估方面的巨大潜力。
总而言之,BNN 在评估测量不确定性方面具有明显

优势,尤其在小样本数据、多源数据融合学习中。 它能有

效建模预测不确定性,适用于复杂的仪器系统,并通过结

合先验知识在有限数据下提供稳健推断。 然而,BNN 也

存在一些局限性,首先,高维后验推断的计算资源需求量

较大,不适用于实时或大规模数据处理。 其次,BNN 对

先验选择敏感,不当的先验可能会导致较大的预测误差。
此外,BNN 的复杂性较高,可能导致模型过拟合,并且其

黑箱特性降低了物理可解释性,这在精度要求高的测量
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任务中是一个限制。 因此,尽管 BNN 在评估不确定性中

表现强劲,但其计算成本、先验依赖和复杂性等也对其应

用造成了一定的限制。
3. 3　 集成学习方法

　 　 EL 方法是一种常用的估计模型不确定度的策略,它
通常通过独立训练多个神经网络模型,并将这些模型的

预测结果进行集成,通过平均效应获得更为稳健的预测

和不确定度估计[112-113] 。 每个网络的初始化权重和随机

化过程通常是不同的,这种多样性使得每个模型的预测

结果可能会有所差异。 EL 方法的结构如图 7 所示,通过

集成多个不同模型的输出,EL 能够有效地减小单一模型

可能带来的预测偏差,进而提高整体模型的泛化能力和

鲁棒性,结合不同模型的多样性来更好地应对不同数据

分布和复杂任务,从而提升模型的性能[128-129] 。

图 7　 集成学习方法结构

Fig. 7　 Structure
 

of
 

the
 

ensemble
 

learning
 

method

在实践中,EL 方法常常通过在每个网络的末尾添加

一个高斯层,以预测高斯分布的均值和方差,作为数据不

确定度的量化指标。 不同网络预测结果的差异则可作为

模型不确定性的度量,反映出模型对输入数据的依赖程

度以及在面对不同输入时的稳定性。 利用这些差异度

量,EL 方法能够在给定输入数据的基础上,提供更为全

面的预测结果和不确定度评估,从而帮助决策者在应用

中做出更加可靠的决策[130] 。
Chen 等[131] 利用 EL 方法与长短时记忆网络相结合,

对压电惯性驱动系统的位移测量不确定度进行了评定;
Hoffmann 等[132] 利用集成学习方法针对光学形状测量中

的逆问题进行了探讨,通过系统地插入分布外误差和噪

声数据来模拟不确定度影响,探索了开发的不确定性量

化的可靠性,并将这种混合建模方法应用于倾斜波干涉

仪的测量中, 证明了 EL 方法估计不确定度的可靠

性[133-134] ;对于深度学习方法存在的校准问题,Rahaman
等[135] 提出了结合正则化等方法可以提高 EL 方法的预

测准确性以及不确定度可靠性。
EL 方法在深度学习中因其能够有效提高模型泛化

能力和不确定度估计而受到广泛关注。 然而,随着集成

成员数量的增加,集成方法所需的内存和计算工作量会

呈线性增长,这使得其在资源有限的环境中应用面临巨

大挑战[101] 。 每增加一个成员模型,不仅需要额外的计算

资源来训练和评估,还需要更多的内存来存储这些模型

的参数和中间结果。 此问题在处理大规模数据集和复杂

网络结构时尤为突出,如何在保证集成效果的同时,降低

内存占用和计算开销,成为了当前以及未来研究的一个

热点问题。
神经网络间接评定方法在复杂非线性和高维数据的

测量不确定度评估中表现出显著优势。 它能自动学习输

入输出关系,适应性强,且能够量化测量结果的不确定

性。 结合贝叶斯理论或 Dropout 等技术,可以增强不确定

度评估的精确性。 然而,该方法依赖于高质量、大规模的

数据,且存在过拟合和计算开销大的问题。 此外,神经网

络的“黑箱” 特性降低了其可解释性。 未来可通过引入

更高效的训练算法和不确定度校准方法,同时结合解释

性人工智能技术提高模型可解释性以及不确定度可靠

性,扩大其在高精度测量中的应用[136-137] 。

4　 结　 　 论

　 　 测量不确定度的评定是确保测量准确性和决策可靠

性的重要环节。 传统的统计方法,如 GUM 和 MCM,虽然

在静态和线性系统中广泛应用,但在处理复杂的非线性、
高维和动态系统时逐渐显现局限性。 近年来,非统计方

法的兴起为测量不确定度的评估提供了更多的方式,包
括贝叶斯推断、灰色评定法、模糊评定法、最大熵方法及

基于神经网络的间接评定法等,展现了其在各类复杂场

景中的适用性和潜力。
特别是神经网络间接评定方法,凭借其强大的非线

性建模能力和适应性,在高维和非线性场景中的表现尤

为突出。 然而,深度学习方法对大规模数据的依赖、高昂

的计算成本以及不确定度评估结果的可靠性,仍是限制

其进一步应用的主要挑战。 未来,结合高效的训练算法

与可靠的不确定度校准方法,将为神经网络在测量不确

定度评估中的广泛应用提供更加坚实的基础。 同时,通
过与传统方法的结合与优化,进一步提升其在实时性、适
应性和可靠性方面的能力,从而满足现代工业和科学研

究中日益复杂的测量需求。
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