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Advances in measurement uncertainty evaluation: From statistical
methods to neural network indirect evaluation

Chen Wenhao,Ding Yinye,Song Rencheng,Zhang Jin, Xia Haojie

(School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefet 230002, China)

Abstract: As the demand for measurement accuracy intensifies in modemn industry and scientific research, the evaluation of
measurement uncertainty has become a crucial component in ensuring product quality and optimizing production processes. Traditional
methods for assessing measurement uncertainty are widely applied in static and linear systems but have shown limitations when dealing
with high-dimensional, nonlinear, or dynamic systems. In recent years, non-statistical methods have effectively complemented
uncertainty evaluation for complex systems. In particular, neural network techniques, with their powerful data processing capabilities and
nonlinear modeling capabilities, have become essential tools for uncertainty evaluation. This study provides a comprehensive review of
statistical methods, including the Guide to the Expression of Uncertainty in Measurement and the Monte Carlo method, as well as non-
statistical approaches such as Bayesian inference, grey evaluation, fuzzy evaluation, and maximum entropy evaluation. The fundamental
principles, advantages, limitations, and typical application scenarios of each method are systematically analyzed. In addition, the recent
trend of integrating these uncertainty evaluation methods with machine learning is discussed. Particular attention is given to emerging
neural network-based indirect evaluation methods, including deterministic models, Bayesian neural networks, and ensemble learning
frameworks. The modeling and evaluation strategies of these approaches are examined in the context of complex nonlinear systems,
highlighting their potential and current limitations. Finally, the applicability of various uncertainty evaluation methods is summarized,

and future research directions are outlined. The study suggests that the integration of multiple evaluation paradigms can enhance the

S H 1. 2025-09-01 Received Date: 2025-09-01
* BATH | HK A RFLAEES (52575620) | FEI K H S & 11 (2023 YFFO719700) 35 H %t Bl



2 RO O

a6t

modeling capability and reliability of uncertainty estimation in complex measurement systems, reduce dependence on large data samples,

and better address the increasingly intricate measurement requirements in modern industry and scientific research.

Keywords : measurement uncertainty; grey system theory; fuzzy evaluation; neural network
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(a) Analytical modeling evaluation
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(b) Neural network indirect evaluation

B4 AN B AN R SE T 8

Fig. 4 Different evaluation methods for measurement uncertainty
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Fig. 5 Components of measurement uncertainty in neural networks
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Fig. 6 Structure of Bayesian neural networks
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Fig.7 Structure of the ensemble learning method
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