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Design of high-precision asymmetric microgripper based on
symmetrical compound half-bridge mechanism

Chen Xiaodong' , Tan Huifeng®, Wei Yonghe',Tian Fengjie' ,Chen Xueyan®

(1. School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110000, China;
2. School of Astronautics, Harbin Institute of Technology, Harbin 150080, China)

Abstract: As the end effector of the micromanipulation system, the microgripper determines the success of the micromanipulation tasks.
The parallelogram mechanism is usually used as the final amplification mechanism of the microgripper because of its parallel clamping
characteristics. However, the parasitic displacement occurs during the rotation of the parallelogram mechanism. Based on this, this
paper proposes a two-stage amplification asymmetric microgripper based on a symmetrical composite half-bridge mechanism driven by a
piezoelectric actuator. The piezoelectric actuator is placed inside the mechanism and acts on the input ends of the compound half-bridge
mechanism on the left and right sides, thereby driving the parallelogram mechanism to complete the clamping action. During operation,
the output force of the left and right composite half-bridge mechanism serves as the input end of the parallelogram mechanism, ensuring
equal force application on both sides. Based on the flexible beam theory and coordinate transformation method, the mechanical model of
the mechanism is obtained. The performance of the microgripper is obtained by finite element analysis and experimental verification
respectively. In terms of parallel clamping characteristics, the rotation angle of the output end of the parallelogram mechanism in the
traditional microgripper is 2. 1xX107*° | while in the proposed design, it is reduced to 1. 15x107*°. This corresponds to a 45.28%
reduction in parasitic displacement along the desired motion direction, significantly improving parallel clamping performance. Regarding
displacement amplification, the traditional microgripper has a magnification of 12.6, while the proposed microgripper achieves a

magnification of 14. 3, representing a 13. 5% improvement in the displacement amplification performance of the output end. For the issue
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of parasitic displacement at the output end, the traditional microgripper exhibits a parasitic displacement of 30.7 nm, whereas the

microgripper designed based on the symmetrical compound half-bridge mechanism in this study reduces this to 10. 8 nm, corresponding to

a 64. 8% reduction. In conclusion, compared with the traditional microgripper, the microgripper presented in this paper demonstrates

superior overall performance.

Keywords : micro-operation ; half-bridge mechanism; parallelogram mechanism; parasitic displacement; clamping accuracy; compliant

mechanism
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