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面向通感一体化的逐次变分模态分解
生命信号频率检测算法

蒲巧林,张杰龙,周　 牧,谭明燚

(重庆邮电大学通信与信息工程学院　 重庆　 400065)

摘　 要:通感一体化(ISAC)作为 6
 

G 的关键使能技术之一,通过深度融合通信与感知功能,增强了 Wi-Fi 设备在非接触式生命

体征检测中的应用潜力。 呼吸率和心率的精确监测对早期疾病预警和健康状态实时监控具有重要意义。 针对现有基于 ISAC
的生命体征检测方法在复杂环境下存在呼吸心跳信号分离效果不理想、抗干扰能力差等问题,提出了一种基于逐次变分模态分

解(SVMD)的生命体征信号分离与频率检测算法。 首先,通过 Wi-Fi 设备采集波束成形反馈信息( BFI),并对其进行预处理得

到波束成形矩阵(BFM)信号。 其次,计算 BFM 中每一对元素的比率,并结合动态特征子载波筛选和多级去噪技术,从复杂多径

环境中精确提取有效的生命体征信号。 再次,引入 SVMD 以利用其逐次提取和无需预设模态数
 

K 的特性,并设计一种基于旅

鼠优化算法(ALA)的自适应参数优化方法,用于确定 SVMD 算法中的关键平衡参数,实现对呼吸和心跳信号的高精度分离。 最

后,通过快速傅里叶变换和峰值检测完成呼吸率和心率的估计。 实验结果表明,在用户异质性、深呼吸、运动后状态和不同距离

等多个典型应用场景下,该方法能有效克服多径效应和环境噪声的干扰,保持稳定的检测性能,相比现有方法的呼吸率和心率

估计精度显著提高,为基于 ISAC 的非接触式生命体征检测提供了一种可靠的解决方案。
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Abstract:Integrated
 

sensing
 

and
 

communications
 

(ISAC),
 

as
 

a
 

key
 

enabling
 

technology
 

for
 

6
 

G,
 

significantly
 

enhances
 

the
 

application
 

potential
 

of
 

Wi-Fi
 

devices
 

in
 

non-contact
 

vital
 

sign
 

monitoring
 

by
 

deeply
 

integrating
 

communication
 

and
 

sensing
 

capabilities.
 

Accurate
 

monitoring
 

of
 

respiratory
 

and
 

heartbeat
 

rates
 

is
 

crucial
 

for
 

early
 

disease
 

warning
 

and
 

real-time
 

health
 

status
 

monitoring.
 

However,
 

current
 

ISAC-based
 

vital
 

sign
 

detection
 

methods
 

often
 

suffer
 

from
 

suboptimal
 

separation
 

of
 

respiratory
 

and
 

heartbeat
 

signals
 

and
 

limited
 

robustness
 

against
 

interference
 

in
 

complex
 

environments.
 

To
 

address
 

these
 

challenges,
 

a
 

vital
 

sign
 

signal
 

separation
 

and
 

frequency
 

detection
 

algorithm
 

based
 

on
 

successive
 

variational
 

mode
 

decomposition
 

(SVMD)
 

is
 

proposed.
 

Firstly,
 

beamforming
 

feedback
 

information
 

( BFI)
 

is
 

collected
 

via
 

Wi-Fi
 

devices
 

and
 

preprocessed
 

to
 

obtain
 

the
 

beamforming
 

matrix
 

(BFM)
 

signal.
 

Subsequently,
 

the
 

ratio
 

between
 

each
 

pair
 

of
 

elements
 

in
 

the
 

beamforming
 

matrix
 

is
 

calculated,
 

and
 

effective
 

vital
 

sign
 

signals
 

are
 

accurately
 

extracted
 

from
 

complex
 

multipath
 

environments
 

by
 

combining
 

dynamic
 

feature
 

subcarrier
 

screening
 

and
 

multi-stage
 

denoising
 

techniques.
 

Furthermore,
 

SVMD
 

is
 

introduced
 

to
 

leverage
 

its
 

characteristics
 

of
 

sequential
 

extraction
 

and
 

independence
 

from
 

presetting
 

the
 

number
 

of
 

modes
 

K.
 

An
 

adaptive
 

parameter
 

optimization
 

method
 

based
 

on
 

the
 

artificial
 

lemming
 

algorithm
 

(ALA)
 

is
 

designed
 

to
 

determine
 

the
 

key
 

balance
 

parameter
 

in
 

SVMD,
 

enabling
 

high-precision
 

separation
 

of
 

respiratory
 

and
 

heartbeat
 

signals.
 

Finally,
 

respirator
 

and
 

heartbeat
 

rates
 

are
 

estimated
 

using
 

Fast
 

Fourier
 

Transform
 

and
 

peak
 

detection.
 

Experimental
 

results
 

demonstrate
 

that,
 

across
 

various
 

typical
 

application
 

scenarios,
 

including
 

user
 

heterogeneity,
 

deep
 

breathing,
 

post-exercise
 

state,
 

and
 

varying
 

distances,
 

the
 

proposed
 

method
 

effectively
 

mitigates
 

the
 

impact
 

of
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multipath
 

effects
 

and
 

environmental
 

noise,
 

maintains
 

stable
 

detection
 

performance,
 

and
 

significantly
 

improves
 

the
 

estimation
 

accuracy
 

of
 

respiratory
 

and
 

heartbeat
 

rates
 

compared
 

to
 

existing
 

methods.
 

The
 

proposed
 

algorithm
 

provides
 

a
 

reliable
 

solution
 

for
 

non-contact
 

vital
 

sign
 

detection
 

based
 

on
 

ISAC.
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0　 引　 　 言
 

　 　 随着物联网技术和无线传感设备的快速发展,非接

触式生命体征检测技术在医疗健康、智能家居和安防监

控等领域得到了广泛应用[1-5] 。 生命体征检测,尤其是呼

吸和心跳检测,对于早期疾病预警和健康状态实时监控

具有重要意义。 传统的生命体征检测主要依赖于直接接

触用户身体的可穿戴设备,如心电图仪、脉搏监测器等,
这些设备虽然可以提供较为准确的检测数据,但由于需

要与人体直接接触,使用过程较为不便,长期佩戴可能会

影响用户体验。 为了解决这一问题,非接触式生命体征

检测技术受到了广泛关注。
在非接触式生命体征检测领域,研究人员利用不同

的信号技术进行了广泛探索。 可见光传感( visible
 

light
 

sensing,
 

VLS)技术通过分析人体反射的光信号变化实现

对呼吸和心跳的检测。 Villarroel 等[6] 将 VLS 技术应用

于新生儿重症监护室,实现了对早产儿心率、呼吸率及血

氧饱和度的连续非接触式监测。 在稳定状态下,该方法

与传统接触式设备的测量误差相当,并能有效识别临床

上的重要事件。 然而,VLS 技术的性能受到光照条件的

显著影响,限制了其在复杂环境中的应用。 雷达技术凭

借其远距离和高精度的优势成为另一个重要研究方向。
Chen 等[7] 利用毫米波雷达开发了一种生命体征检测系

统,该系统能够抑制低信噪比下呼吸谐波的影响,精确分

离呼吸和心跳信号。 Alizadeh 等[8] 使用 77
 

GHz 的调频

连续波( frequency-modulated
 

continuous
 

wave,FMCW) 雷

达在卧室环境中提取患者的呼吸和心跳数据,呼吸和心

跳的相关性分别达到 94% 和 80% ,进一步证明了 FMCW
雷达在家庭环境中的可行性。 尽管雷达技术展现出优异

的性能,但其较高的设备成本限制了其广泛应用。 射频

识别(radio
 

frequency
 

identification,
 

RFID)技术为非接触

式生命体征检测提供了另一种解决方案。 Liu 等[9] 提出

了一种基于商用 RFID 设备的呼吸监测原型系统,即使

在用户移动的情况下仍能准确监测呼吸速率,呼吸率估

计的准确率超过 97% 。 Zhao 等[10] 提出了非接触式呼吸

与心跳监测 系 统 ( contactless
 

respiration
 

and
 

heartbeat
 

monitoring,CRH ) 系 统, 通 过 多 标 签 经 验 模 态 分 解

(empirical
 

mode
 

decomposition,
 

EMD)方法分离呼吸和心

跳信号,实现了多用户环境下的高精度检测。 然而,

RFID 技术在检测距离和角度上的依赖性较强,限制了其

应用场景。 声信号技术作为另一种低成本的检测手段也

展现出独特优势。 Qian 等[11] 提出的 Acousticcardiogram
技术利用智能设备上的麦克风和扬声器,通过分析人体

对声波的反射来检测呼吸和心跳。 实验结果显示,该系

统的心率估计误差中值为 0. 6 次 / min,心跳间隔估计误

差中值为 19
 

ms。 Wang 等[12] 提出的 LoEar 系统显著扩

展了声学感测范围,将呼吸检测的有效距离从 2
 

m 提升

至 7
 

m,心跳检测的范围从 1. 2
 

m 扩展至 6. 5
 

m。 然而,
声信号易受环境噪声干扰的特点限制了其在复杂环境中

的应用。 相比之下,Wi-Fi 信号凭借其广泛部署和低成本

的优势,逐渐成为生命体征检测领域的重要研究方向。
随着通感一体化 ( integrated

 

sensing
 

and
 

communic-
ations,

 

ISAC)作为 6
 

G 关键技术的兴起,Wi-Fi 设备在通

信功能之外,感知环境微小变化的能力得到显著增强,为
生命体征检测提供了更高效、更精准的可能性。 目前,基
于 Wi-Fi 的生命体征检测技术主要利用接收信号强度指

示(received
 

signal
 

strength
 

indicator,
 

RSSI)和信道状态信

息( channel
 

state
 

information,
 

CSI) 两种数据源。 基于

RSSI 的检测方法通过测量无线信号强度的变化来推断

呼吸和心跳等生命体征[13] 。 然而,由于 RSSI 数据粒度

较粗,它反映的是整体信号强度的变化,无法分辨出信号

在空间中的多径效应与微小的生理运动之间的差异,这
使得其对细微的运动(如心跳等)的捕捉能力有限,导致

检测精度受限。 相比之下,CSI 提供了更为细粒度的信

道信息,能够反映信号在每一个子载波上传播的多径效

应和频率选择性衰落。 Wang 等[14] 提出的 PhaseBeat 系

统利用商用 Wi-Fi 设备的 CSI 相位差数据检测呼吸和心

跳,在不同室内环境下均表现出优越性能。 Zhang 等[15]

基于菲涅尔区理论深入研究了人体呼吸对 Wi-Fi 信号传

输路径的影响,提出了一种改进的小波算法,使呼吸频率

估计误差控制在 3. 9%以内。 然而,CSI 数据的获取和处

理通常需要专门的硬件设备和特定的无线协议支持,限
制了其在实际应用中的普适性。 为了克服这些问题,波
束成形反馈信息(beamforming

 

feedback
 

information,
 

BFI)
作为新一代 Wi-Fi 硬件上广泛可用的另一种信息,为生

命体征检测提供了新的可能性。 与传统的 CSI 相比,BFI
是一种通过接收端反馈发射端波束权重,用于辅助多天

线系统中的波束成形优化的反馈数据。 在现阶段 IEEE
 

802. 11ac / ax 协议标准中,BFI 在发射器(TX)和接收器(RX)
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之间的交换是以明文方式加载到控制帧上,未进行加密

的。 因此,BFI 明文传输的性质,使其可以在任何能够监

控 Wi-Fi 流量的设备上轻松获取,无需进行复杂的硬件

修改或驱动程序调整,这使得其在实际应用中更具可操

作性。 Kanda 等[16] 提出了一种基于 Wi-Fi 帧捕获的呼吸

率估计方法,通过对捕获帧中的 BFI 进行主成分分析,成
功分离出胸部运动的影响,实验结果表明该方法的呼吸

率估计误差低于 3. 2 次 / min。 Hu 等[17] 开发了 M2-Fi 系
统,创新性地利用近场效应和变分模态分解技术,成功实

现了基于手持设备的多人呼吸信号检测,这些工作证明

了 BFI 在细粒度感知应用中的可行性。 然而,现有基于

BFI 的生命体征检测研究主要集中在呼吸信号检测方

面,对于幅度更小、更易受干扰的心跳信号的检测和分离

研究相对较少。 因此,要充分发挥基于 BFI 的检测方法

在非接触式生命体征检测中的优势,在实际应用中仍然

面临一个主要技术挑战:如何从 BFI 信号中将呼吸和心

跳信号精确有效地分离开来。
尽管呼吸与心跳信号在频率上有所差异,但在某些

频段其频谱会发生重叠,尤其是在心跳信号较弱时,呼吸

信号的强度会干扰心跳的检测。 传统的信号分离方法,
如使用指定频率范围的简单带通滤波器并不能有效地分

离呼吸和心跳信号。 近年来,信号分解领域技术的不断

发展,为解决生命体征信号分离问题提供了新的思路和

方法,例如经典的经验模态分解(EMD) [18] 和变分模态分

解(variational
 

mode
 

decomposition,
 

VMD) [19] 。 然而,这些

传统的模态分解算法虽然在一定程度上能够分离呼吸心

跳两种信号,但其存在的边缘效应、模态混叠等问题,导
致噪声鲁棒性不足,限制了其实际应用性能。

针对上述问题,提出了一种基于逐次变分模态分解

(successive
 

variational
 

mode
 

decomposition,
 

SVMD) [20] 的

生命信号频率检测算法。 该算法通过引入 SVMD 以利用

其逐次提取和抗模态混叠的特性,并进一步采用旅鼠优

化算法(artificial
 

lemming
 

algorithm,
 

ALA) [21] 自适应地选

择 SVMD 中关键平衡参数的最优值,从而构建了参数自

适应的 ALA-SVMD 信号分离方法,有效实现了对呼吸与

心跳信号的高精度分解与重构。 与传统的生命信号分离

方法相比,ALA-SVMD
 

算法针对不同用户的生理特征和

复杂环境噪声自适应地选择最优参数,在处理高噪声且

信号特征复杂的情况下,展现出更优的分离效果,显著提

高了呼吸和心跳信号的分离精度和信噪比。

1　 BFI 生命体征检测原理

　 　 波 束 成 形 反 馈 机 制 ( beamforming
 

feedback
 

mechanism)是 Wi-Fi 通信中的核心技术流程。 在基于多

天线阵列的波束成形( beamforming,
 

BF)过程中,接收端

通过波束成形反馈信息向发送端传递信道状态数据,发
送端据此动态优化波束方向,以提升信号传输的强度与

稳定 性。 BFI 包 括 波 束 成 形 反 馈 矩 阵 ( beamforming
 

feedback
 

matrix,
 

BFM) 和平均流信噪比( averaged
 

stream
 

SNR,
 

AS-SNR),其中 BFM 主要用于实现 MU-MIMO 传

输,帮助 Wi-Fi
 

AP 调整每个天线发射信号的权重参数,
将波束导向所需的方向,这是 IEEE

 

802. 11ac 及其之后

Wi-Fi 标准的一个关键特性。 BFM 虽然也描绘无线信

道,但与 CSI 不同,它是 CSI 的一种压缩数字版本。 CSI
描述了环境如何改变以不同载波频率传输的信号。 具体

来说,用 x( f,t) 和 y( f,t) 分别表示发送和接收信号在时

间 t 和频率 f 的频域表示, 用 h( f,t) 表示 CSI, 则有

y( f,t) = h( f,t) × x( f,t)。 考虑M × N
 

MIMO 正交频分复

用( orthogonal
 

frequency
 

division
 

multiplexing,
 

OFDM
 

) 系

统, K 个子信道,M 个发射天线以及 N 个接收天线, 此时

CSI 是一个 K × M × N 维矩阵,为任意给定的一对发射和

接收天线提供每个 OFDM 子信道上的幅度和相位信息。
为了支持 MU-MIMO,AP 将空数据包( null

 

data
 

packet,
 

NDP)发送给 STA 启动信道探测。 STA 对接收到的 NDP
进行信道估计,在去除循环移位延迟( cyclic

 

shift
 

delay,
 

CSD
 

)后,得到 CSI 矩阵。 为了减少发送整个信道状态的

高传输开销,STA 对得到的 CSI 矩阵进行奇异值分解

(singular
 

value
 

decomposition,
 

SVD)计算得出 BFM,并将

其进一步压缩量化为压缩波束成形反馈 ( compressed
 

beamforming
 

feedback,
 

CBF) 后反馈给 AP。 一个典型的

Wi-Fi 系统中的波束成形详细流程如图 1 所示。

图 1　 MU-MIMO 传输的探测过程

Fig. 1　 Detection
 

process
 

of
 

MU-MIMO
 

transmission

基于 BFM 的生命体征检测系统如图 2 所示,在生命

体征检测中,Wi-Fi 信号的应用基于其对环境变化的高灵

敏度特性。 人体的呼吸和心跳活动会引起胸部的微小位

移(约 0. 5
 

cm 和 0. 5
 

mm),这种位移会改变 Wi-Fi 信号

的传播路径,从而导致信道特性的变化。 通过提取和分

析 BFI,能够捕捉到这些变化。 这是因为 BFI 中的 BFM
与 CSI 矩阵类似,包含了信道的幅度和相位信息,这些信

息会随着信号传播路径的改变而呈现出与生命体征频率

相对应的周期性变化特征。
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图 2　 基于 BFM 的生命体征检测系统

Fig. 2　 BFM-based
 

vital
 

signs
 

detection
 

system

具体来说,BFM 的幅度和相位在时间上的变化可以

反映出呼吸和心跳引起的信道变化。 假设 BFM 的一个

元素可以表示为复数形式 H( t) = A( t)·e jϕ( t) ,其中 A( t)
为幅度,ϕ( t) 为相位。 人体的微小运动会导致 Wi-Fi 信
号的传播路径发生变化,从而引起 BFM 中幅度 A( t) 和

相位 ϕ( t) 随时间的变化。 这种变化与生命体征的周期

性活动(如呼吸和心跳)频率相对应。 通过对 BFM 的幅

度和相位进行提取和分析,可识别其随时间的周期性变

化模式。 这些周期性变化模式可以采用时域和频域两种

分析方法来进一步分析。 在时域分析中,对于信号的周

期性变化
 

的分析方法包括自相关分析和零交叉检测等。
　 　 　 　

这些方法通过分析信号的时间序列特征来估计生命体征

的周期频率。 而在频域分析中,信号的周期性变化会表

现为显著的频谱峰值,通过识别这些频谱峰值所对应的

频率,来得到信号的周期频率信息。 这种基于 Wi-Fi 信

号的生命体征检测原理利用了 BFM 对信道状态的精细

刻画能力。 通过分析 BFM 中幅度和相位的变化,可获取

与生命体征活动相关的周期性信息,从而实现对呼吸和

心跳的精确检测。
所提系统框架如图 3 所示,主要包括数据采集、数据

预处理、子载波选择、信号分解与重构以及频率估计 5 个

模块。 1)将采集到的原始 BFI 数据进行解压缩重构获得

BFM 矩阵,并计算其中每一对元素的比值生成 BFM-ratio
 

r( t), 其中每个 BFM-ratio
 

r( t) 可以进一步分为幅度比率

和相位比率;2)对选定的 BFM-ratio
 

r( t) 数据流进行带通

滤波器和小波去噪处理;随后,通过对信号中的每个子载

波进行相空间重构并提取出多维动态特征来进行评分筛

选,选择评分最高的 k 个子载波加权合成最优子载波信

号 f( t);3) 对得到的最优子载波信号 f( t) 进行进一步的

数据处理后,通过应用了平衡参数最优值 α 的 SVMD 算

法对其进行分解与重构,从中提取出目标生命信号。 最

后,通过快速傅里叶变换和滑动窗口峰值检测完成呼吸

率和心率的精确估计。

图 3　 生命信号频率检测算法系统

Fig. 3　 Block
 

diagram
 

of
 

vital
 

signal
 

frequency
 

detection
 

algorithm
 

system

2　 生命信号频率检测算法
 

2. 1　 数据预处理

　 　 1)
 

BFM-ratio 模型

在之前的研究中,研究人员发现 BFM 虽然具有与

CSI 相似的感知能力,但二者之间存在差异,这种差异是

由于 BFM 的幅度和相位变化引起的。 具体而言,BFM 元

素的幅度是信道系统对应 CSI 元素的幅度乘以一个缩放

因子,且该缩放因子受所有天线信号幅度的影响,是一个

时变变量,导致 BFM 幅度发生变化。 此外,BFM 单元的

相位是两个天线的相位差,它随目标运动而变化,相位差

与信号幅度之间的耦合远弱于 CSI 相位与信号幅度之间

的耦合。 由于 BFM 和 CSI 模式在复平面上存在明显差

异,以及 BFM 与目标位移之间的定量关系丢失,许多现

有的基于 CSI 的感知模型和方法不能直接应用于 BFM
感知。 为了解决使用 BFM 进行传感时存在的问题并实

现定量目标位移传感, Yi 等[22] 提出了一种名为 BFM-
ratio 的新度量,通过利用两个 BFM 元素的比值消除了缩

放因子对 BFM 幅度的影响和相位偏移对 BFM 相位的影

响,还原了信号变化与目标运动之间的定量映射。 基于

上述原理,本研究使用 BFM-ratio 来进行生命体征检测任

务的研究。
2)

 

滤波去噪

由于 Wi-Fi 信道中采集的 BFM 数据不可避免地受

到环境噪声、多径效应等非线性干扰的影响,需要进行有
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效的滤波处理以提高信号质量。 针对生命体征信号的

频率特性,本研究采用 4 阶 Butterworth 带通滤波器将信

号限制在 0. 1 ~ 2. 0
 

Hz,这一频段包含了呼吸( 通常为

0. 1 ~ 0. 5
 

Hz)和心跳(通常为 0. 8 ~ 2. 0
 

Hz)的主要频率

成分。 然而,带通滤波虽然能够有效抑制频带外的噪

声,但对于频带内的突发性噪声和非平稳干扰仍缺乏

有效处理能力。 为了进一步提高信号质量,本研究引

入小波去噪技术对滤波后的 BFM-ratio 信号进行精细处

理。 具体而言,采用 db4 小波基对信号进行 5 层分解,
通过软阈值法对小波系数进行处理,有效去除了信号

中的高频噪声和突发干扰,同时保留了呼吸和心跳信

号的关键特征。
2. 2　 子载波选择

　 　 在基于 Wi-Fi 信号的生命体征检测中,子载波选择

对系统性能起着关键作用。 由于人体呼吸和心跳引起

的胸腔微小位移会对不同子载波产生不同程度的影

响,且环境噪声、多径效应等因素会使部分子载波携带

的生理信息失真或被掩盖。 传统的子载波选择方法主

要基于信号能量或信噪比等静态特征进行评估,难以

充分捕捉信道的动态特性,导致选择结果的可靠性和

稳定性不足。 为了更全面地评估子载波特性并提高选

择的准确性,本研究提出了一种基于相空间重构的动

态特征提取方法,通过分析子载波信号的非线性动态

特征来实现最优子载波的选择。 首先,将子载波信号

按能量排序,选取每个
 

BFM-ratio
 

信号
 

r( t) 中能量最高

的前
 

n 个子载波,以保留更多信道动态特性,确保后续

分析的代表性。 其次,对于每个选出的代表性子载波,
使用平均互信息( average

 

mutual
 

information,
 

AMI)方法

和 Cao 方法分别计算其最佳时间延迟 τ 和最佳嵌入维

数m[23] , 根据选定的时间延迟和嵌入维数,对每个代表

性子载波进行相空间重构,生成高维相空间轨迹。 随

后,对这些轨迹进行分析,提取出多维动态特征来进行

评分筛选。 这些特征旨在从复杂度、规律性和生理信

号显著性等维度进行量化。 具体而言,提取了 7 项指

标,包括用于衡量信号非线性结构和复杂度的关联维

度( correlation
 

dimension,
 

D2 ) 和最 大 李 雅 普 诺 夫 指

数(λ)作为相空间结构特征;基于自相关分析与小波能

量计算的周期规律性评分作为轨迹周期性特征;以及

呼吸与心跳频带能量占比和峰值清晰度作为生命体征

相关能量特征。 最后,计算每个子载波的特征评分,基
于评分结果,选择评分最高的 k 个子载波来进行加权合

成,形成优化后的生命体征检测信号 f( t) , 提升生命体

征检测的准确性和鲁棒性。 图 4 展示了所提方法与传

统的基于方差( variance,
 

VAR)以及基于短时呼吸噪声

比( breathing-to-noise
 

ratio,
 

BNR) 的子载波选择方法的

呼吸心跳波形对比。

图 4　 子载波选择对比

Fig. 4　 Comparison
 

of
 

subcarrier
 

selection

　 　 如图 4(a)所示,所提方法能够提取出更平滑且周期

性特征明显的呼吸信号。 相比之下,VAR 和 BNR 方法其

波形受多径效应和干扰的影响显著,呈现出明显的失真。
此外,从图 4(b)可以观察到,所提方法所选子载波得到

的心跳波形在时间维度上的波动表现出更高的一致稳定

性,而 VAR 和 BNR 方法的波形则存在较大波动。
此外,在室内多径环境进行 30 组测试得到的不同子

载波选择方法的平均误差估计结果如表 1 所示。

表 1　 不同子载波选择方法下的 RR 和 HR 误差估计结果

Table
 

1　 RR
 

and
 

HR
 

error
 

estimates
 

under
 

different
 

subcarrier
 

selection
 

methods
 

(bpm)

指标 所提方法 VAR BNR

RR 0. 07±0. 13 0. 88±1. 03 1. 22±1. 77

HR 1. 33±1. 61 4. 51±5. 20 4. 19±5. 04
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　 　 定 量 分 析 显 示, 本 研 究 使 用 方 法 呼 吸

(0. 07±0. 13
 

bpm)和心跳(1. 33±1. 61
 

bpm)的估计误差,
明显 优 于 VAR 方 法 ( 呼 吸 0. 88 ± 1. 03

 

bpm, 心 跳

4. 51±5. 20
 

bpm)和 BNR 方法(呼吸 1. 22±1. 77
 

bpm,心
跳 4. 19±5. 04

 

bpm)。 这一结果表明,本研究使用方法通

过相空间重构动态捕捉信号的非线性动力学特征,结合

时频联合分析有效分离干扰,实现了更精准的子载波选

择,验证了其在复杂多径干扰下的优越性能。
2. 3　 基于 SVMD 的生命信号提取

 

　 　 1)
 

逐次变分模态分解算法

在生命体征检测中,精确地从复杂信号中分离出呼

吸和心跳信号对于提高检测准确性至关重要。 尽管经验

模态分解(EMD)和变分模态分解( VMD)在处理此类信

号时展现出一定的能力,但其存在的模态混叠、边缘效应

等问题导致噪声鲁棒性不足,限制了它们的实际应用性

能。 为此,本研究引入了逐次变分模态分解( SVMD),一
种改进的自适应信号处理技术。

SVMD 在复杂非平稳信号处理领域展现出广泛的应

用前景和优势,凭借其对复杂信号的初步分离和有效信

息提取能力,该技术已被成功应用于局部放电去噪[24] 、
谐波信号检测[25] 以及超声组织谐波成像[26] 等诸多任务

中。 SVMD 通过迭代解决约束变分问题,自动确定模态

数量并优化中心频率,从而提高了分解效率和信号重构

的准确性。 此方法不仅减少了计算时间,还通过避免冗

余模态提取,增强了算法对初始参数选择的鲁棒性,使其

更适合处理从复杂环境中提取的非平稳生命体征信号。
在本研究的生命体征检测任务中,SVMD 被用于从

处理后的信号中分离出呼吸和心跳信号。 具体来说,首
先将处理后的原始生命体征检测信号 f( t) 分解为多个

本征模态函数(intrinsic
 

mode
 

function,
 

IMF)分量,通过对

这些 IMF 分量的分析和重构,可以有效地提取出呼吸和

心跳信号。 假设待分解的原始生命体征检测信号 f( t)
被分解为两个部分:当前提取的第 L 个模态 uL( t) 和残差

信号 fr( t), 其数学表达式为:
f( t) = uL( t) + fr( t) (1)
其中,残差信号 fr( t) 包含了之前已提取出的所有模

态之和及尚未处理的信号部分,即:

fr( t) = ∑
L-1

i = 1
u i( t) + fu( t) (2)

SVMD 的模态提取过程基于 4 个优化准则,其中

3 个准则与 VME 相同,简要描述如式(3) ~ (10)所示。
每个模态的频谱应尽可能集中在其中心频率附近。

为了实现这一点,SVMD 通过最小化以下准则来保证每

个模态的紧凑性:

J1 = ‖∂t δ( t) + j
πt( ) ∗uL( t)

é

ë
êê

ù

û
úú e

-jωLt‖2
2 (3)

其中, ωL 为第 L 模态的中心频率;∗ 表示卷积

运算。
在模态 uL( t) 具有有效频率分量的地方,残差信号

的能量应尽可能小。 为了实现这一点,SVMD 使用一个

适当的滤波器 β̂L(ω), 其频率响应为:

β̂L(ω) = 1
α(ω - ωL)

2 (4)

相应的优化准则为:
J2 = ‖βL( t)∗fr( t)‖2

2 (5)
其中, βL( t) 是滤波器的脉冲响应。
为了防止新提取的模态与之前提取的模态重叠,

SVMD 要求新模态在之前模态的中心频率附近的能量要

尽可能小。 这一约束采用与准则 J2 类似的方式实现,即
使用合适的滤波器,其频率响应为:

β̂ i(ω) = 1
α(ω - ω i)

2 ,　 i = 1,2,…,L - 1 (6)

相应的优化准则为:

J3 = ∑
L-1

i = 1
‖β i( t)∗uL( t)‖2

2 (7)

最后一个准则是保证原始生命体征检测信号 f( t) 可

以通过提取出的 L 模态及未处理部分的信号完全重构。
其表达式为:

f( t) = uL( t) + fu( t) + ∑
L-1

i = 1
u i( t) (8)

其中, fu( t) 表示信号的未处理部分。
当 L-1 模态已知时,第 L 模态的提取任务可以转化

为一个约束最小化问题,即:
min
uL,ωL,fr

{αJ1 + J2 + J3}

s. t.
 

uL( t) + fr( t) = f( t){ (9)

其中,α 是用于平衡不同准则重要性的参数。 为了

将式(9)中的约束最小化问题转化为无约束优化问题,
SVMD 算法引入二次罚项和拉格朗日乘子 λ, 得到的增

广拉格朗日函数如式(10)所示。
(uL . ωL . λ) = αJ1 + J2 + J3 +

f( t) - uL( t) + fu( t) + ∑
L-1

i = 1
u i( t)( )

2

2
+

λ( t),f( t) - uL( t) + fu( t) + ∑
L-1

i = 1
u i( t)( ) (10)

为了求解该优化问题,SVMD 采用交替方向乘子法

(ADMM)算法来迭代求解获得最优值。 SVMD
 

通过逐次

提取模态,将多维优化问题转化为多个一维优化问题,从
而大大减少了迭代次数,节省了计算时间。

2)
  

ALA 优化的 SVMD
在 SVMD 算法中,最重要的参数是平衡参数 α。

α 值过小可能导致模态混合问题,α 值过大,则可能产

生大量的模式,其中大部分是噪声或干扰分量,影响分
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解出的呼吸心跳信号的重构精度,并且可能影响算法

的收敛性,因此,SVMD 的 α 值的确定是一项非常重要

而又具有挑战性的任务。 对于不同的信号,合适的 α值

通常在很大的范围内变化,如果手动设置 α 的值,过程

极其繁琐,难以获得最佳参数,这会影响后续的信号分

解结果。 此外,手动设置的参数对不同信号的适应性

较差,在大多数情况下,同一 α 参数不能应用于不同的

生命体征检测信号。
针对 SVMD 存在的不足,本研究提出利用旅鼠优化

算法(ALA)来优化 SVMD 中的关键参数 α, 使其能够自

适应地选择平衡参数的最优值,进一步提高信号分离的

精度和鲁棒性。 ALA 算法是一种新型的元启发式算法,
灵感来源于对旅鼠在自然界中的 4 种不同行为:长途迁

徙、挖洞、觅食和躲避捕食者,与传统的函数优化算法相

比,ALA 算法具有更快的收敛速度和更高的优化精度。
本研究首先利用该算法对 SVMD 的平衡参数 α 进行迭代

搜索得到最优值,其中,初始种群规模 P 设定为 30,最大

迭代次数 Tmax 设定为 30,平衡参数 α 的搜索范围为

[1
 

000,
 

4
 

000],基于对 ALA 收敛性曲线的分析,该配置

(P= 30,
 

Tmax = 30)能够在保证算法寻优效率的同时,有
效探索 α 的广阔解空间,兼顾了寻优精度与计算开销。
随后,对得到的原始生命体征检测信号 f( t) 进行分解得

到 IMFs,再根据呼吸心跳信号所在的频率范围进行初步

分组。 之后,进一步结合频率和能量进行适合的模态选

择,使用各自最相关的模态进行对应的呼吸心跳信号重

构。 最后,对重构出的呼吸心跳信号分别进行 FFT,并利

用滑动窗口方法在对应的频率范围内检测频谱峰值,得
到最终的呼吸心跳平均估计速率。

3　 实验与性能评估

3. 1　 实验配置

　 　 在 实 验 中, 本 研 究 使 用 商 用 Wi-Fi 路 由 ( TL-
XDR5410,

 

TP-Link)作为 AP,一台 COMFAST
 

CF-966AX
作为 STA,一台配备支持 802. 11

 

ac / ax 的 Wi-Fi 网卡的笔

记本电脑作为捕获设备。 尽管多用户( multi-user,
 

MU
 

)
BFI 包含一个额外的数据场用于每子载波 SNR 估计,但
现有研究表明单用户(single-user,SU)波束成形能力更普

遍地得到支持,因此本研究的工作重点放在 SU
 

BFI 所携

带的信息上。 Wi-Fi 路由器默认工作在 149 信道、带宽为

80
 

MHz 的频段。 此外,Wi-Fi 芯片启动信道探测的频率

取决于当前的网络使用情况。 为保持网络活动并促使信

道探测,路由器通过 LAN 接口连接至一台电脑,并在后

台运行一对 iPerf3 连接,以支持 1
 

Mbps 的环境流量,此
设置符合常规使用场景,实现的平均信道探测频率约为

10
 

Hz。 波束成形反馈帧由捕获设备通过 tshark 命令捕

获,生成 pcap 网络捕获文件。 对于每个单独的实验,每
次实验都使用来自同一型号的一对 Wi-Fi 设备。

如图 5 所示,所有实验均在一个典型的会议室环境中

进行。 共招募 5 名志愿者参与实验,其中 4 名男性,1 名女

性,年龄在 22~ 26 岁。 在整个实验过程中,受试者佩戴接

触式呼吸和心跳传感器获取真实的 HR 和 RR 作为参考。

图 5　 实验场景及相关设备

Fig. 5　 Experimental
 

scenarios
 

and
 

related
 

equipment

在图 5 显示的实验过程中,AP 与 STA 之间的距离为

2
 

m,受试者深坐在椅子上,保证其胸部高度、AP 和 STA
的天线布置在同一高度。 每个单独实验过程中,所有受

试者坐在椅子上以恒定速率与节拍器同步呼吸,在正常

呼吸 30
 

s 以上的情况下进行测试,在实验测量时间内,受
试者有小的不自觉的随机身体运动。 为保证实验结果的

统计可靠性,每位受试者在各场景下均独立进行
 

30
 

组测

试,最终性能指标采用其平均值。 将采集到的数据传输

到笔记本电脑上,用于对所提出的生命体征检测方法的

性能评估。 实验中采用平均绝对误差 ( mean
 

absolute
 

error,MAE)、平均估计精度 ( mean
 

estimation
 

accuracy,
MEA)和信噪比(signal

 

to
 

noise
 

ratio,SNR)来评估算法性

能。 其中 MAE 和 MEA 用于评估估计值与参考传感器测

量值的偏差,可以表示为:

MAE = 1
N ∑

N

i = 1
y i - x i (11)

MEA = 1
N ∑

N

i = 1
1 -

y i - x i

x i
( )( ) × 100% (12)

其中,N 为估计结果总数; y i 为对 BFI 信号估计得到

的 RR 或 HR; x i 为接触式传感器同步记录得到的 RR 或

HR 的参考值。
SNR 用于评估分离信号的质量,定义为目标频带内

的信号功率与噪声功率之比,即:

SNR = 10 × lg
Psignal

Pnoise
( ) (13)

其中, Psignal 为目标频带(呼吸:0. 1 ~ 0. 4
 

Hz,心跳:
0. 8 ~ 2. 0

 

Hz)内的信号功率; Pnoise 为频带外的噪声功率。
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3. 2　 基于 SVMD 的呼吸与心跳信号分离实验分析

　 　 1)
 

用户异质性的影响

为了验证所提出的 ALA-SVMD 算法的有效性,本
研究研究了用户异质性对所提出的 ALA-SVMD 算法的

生命体征检测性能的影响。 实验对比了 4 种信号分离

方法:EMD 方法、CEEMDAN 方法、VMD 方法以及本研

究提出的方法。 其中,EMD
 

和
 

CEEMDAN
 

采用文献中

普遍使用的标准参数配置,其分解结果经调试已达到

稳定表现;VMD
 

方法的参数按照相关研究推荐设置为

K = 5 和 α = 3
 

000,该参数组合经初步验证能够获得较

优的分解质量。 上述设置确保了各方法对比的公平

性,避免因参数未充分调优导致的性能偏差。 由于不

同受试者的生命信号特征不同,本研究提出的 ALA-

SVMD 算法为每个受试者检索最优的分解参数,以实现

准确的生命体征检测。 在一组测试中,各受试者的最

优分解参数如表 2 所示。

表 2　 各受试者的最优分解参数
Table

 

2　 Optimal
 

decomposition
 

parameters
 

for
 

each
 

subject

参数
受试者

A B C D E
α 2

 

649. 77 2
 

490. 75 3
 

620. 24 3
 

161. 83 2
 

792. 73

　 　 可以看出,不同主体具有不同的最优分解参数,使用

ALA 优化算法自适应获取最优分解参数是有必要的。
不同受试者在 4 种信号分离方法下的 RR 和 HR 平

均误差估计结果如表 3 所示。

表 3　 不同受试者在不同信号分离方法下的 RR 和 HR 平均误差估计结果

Table
 

3　 RR
 

and
 

HR
 

mean
 

error
 

estimates
 

for
 

different
 

subjects
 

with
 

different
 

signal
 

separation
 

methods (bpm)

受试者
所提算法 EMD CEEMDAN VMD

RR HR RR HR RR HR RR HR

A 0. 15±0. 19 1. 48±0. 89 0. 15±0. 19 4. 86±3. 61 0. 15±0. 19 5. 16±4. 69 0. 15±0. 19 4. 24±2. 40

B 0. 45±0. 36 2. 39±1. 06 0. 26±0. 21 4. 21±2. 13 0. 61±0. 55 4. 18±1. 57 0. 45±0. 36 3. 54±1. 71

C 0. 33±0. 29 1. 81±0. 94 0. 40±0. 33 3. 67±2. 24 0. 40±0. 33 3. 98±2. 15 0. 33±0. 29 2. 39±1. 58

D 0. 10±0. 16 2. 76±1. 17 0. 10±0. 16 3. 05±1. 69 0. 10±0. 16 2. 77±1. 51 0. 10±0. 16 3. 34±1. 53

E 0. 66±0. 41 1. 13±0. 76 0. 83±0. 67 2. 95±1. 43 0. 66±0. 41 3. 32±1. 82 0. 66±0. 41 1. 30±1. 22

平均值 0. 34±0. 28 1. 91±0. 96 0. 35±0. 31 3. 75±2. 22 0. 38±0. 33 3. 88±2. 35 0. 34±0. 28 2. 96±1. 69

　 　 可以看出,ALA-SVMD 算法对 5 名受试者实现了

MAE<1
 

bpm 的 RR 检测和 MAE<3
 

bpm 的 HR 检测。 此

外,图 6(a)和 6( b)分别展示了不同受试者在 4 种信号

分离方法下的 RR 和 HR 平均估计精度结果。

图 6　 不同信号分离方法的 RR 和 HR 平均估计精度比较

Fig. 6　 Comparison
 

of
 

mean
 

estimation
 

accuracies
 

of
 

RR
 

and
 

HR
 

for
 

different
 

signal
 

separation
 

methods
 

从图 6(a)可以看出,各算法对不同用户呼吸信号的

平均估计精度均较高。 值得注意的是,EMD 算法在其中

一组受试者的测试中表现稍差,显示其在不同用户数据

适应性方面存在一定问题。 此外,由图 6( b)可知,所用

算法对不同用户的心跳信号估计均实现了 96%以上的平

均估计精度,普遍高于其他算法,表明本算法能够提供更

为准确的呼吸率和心率估计结果。 图 7 为 RR 和 HR 估

计误差的箱型图对比,其结果进一步证实了所提算法在

误差分布上表现出更强的一致性,波动范围显著窄于其

他对比方法,具有更高的鲁棒性。 表 4 展示了不同受试

者在不同信号分离方法下得到的 RR 和 HR 平均 SNR
结果。

结果显示,在各组测试中,ALA-SVMD 算法分离出

的呼吸和心跳信号 SNR 分别达到 18. 26 和 29. 95
 

dB。
尽管 ALA-SVMD 算法分离出的呼吸信号 SNR 与次优

算法结果相近,但其分离出的心跳信号 SNR 明显更高,
平均高出其他方法 10

 

dB,表明该方法在噪声抑制和生

理信号提取方面具有更大优势。 此外,各算法对呼吸

信号的估计效果差异较小,因此后续实验将重点分析

心率检测性能。
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图 7　 RR 和 HR 平均估计误差箱型图

Fig. 7　 RR
 

and
 

HR
 

mean
 

estimation
 

error
 

box
 

plots

表 4　 不同受试者在不同信号分离方法下的 RR 和 HR 平均 SNR
Table

 

4　 Mean
 

SNR
 

of
 

RR
 

and
 

HR
 

for
 

different
 

subjects
 

with
 

different
 

signal
 

separation
 

methods (dB)
 

受试者
所提算法 EMD CEEMDAN VMD

RR HR RR HR RR HR RR HR

A 15. 18 36. 87 8. 33 7. 54 8. 27 8. 54 15. 74 16. 85

B 20. 33 24. 20 9. 66 7. 33 10. 49 9. 94 19. 90 19. 32

C 19. 90 29. 30 9. 62 7. 76 8. 92 8. 07 17. 47 17. 80

D 15. 79 26. 69 7. 30 6. 67 10. 98 6. 99 15. 12 11. 49

E 20. 09 32. 71 9. 71 7. 89 12. 94 7. 43 18. 66 25. 24

平均值 18. 26 29. 95 8. 92 7. 44 10. 32 8. 19 17. 38 18. 14

　 　 2)
 

人体目标状态的影响

考虑到实际应用中生理状态的动态变化特性,本
研究设计了同一受试者在 3 种实验场景下 ( 静息状

态、深呼吸状态和运动后状态) 的生命体征检测实验,
以进一步验证所提方法的有效性,结果对比如图 8
所示。

图 8　 不同信号分离算法得到的呼吸心跳信号频域分析结果

Fig. 8　 Frequency
 

domain
 

analysis
 

results
 

of
 

respiratory
 

heartbeat
 

signals
 

obtained
 

by
 

different
 

signal
 

separation
 

algorithms
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　 　 图 8(a) ~ (c)分别展示了 3 组实验场景下 4 种方法

分离出的呼吸和心跳信号在频域上的分析结果。 从图 8
中可以看出,所提方法检测到的人体目标在静息状态下的

呼吸频率约为 0. 16
 

Hz(9. 6
 

bpm),心跳频率约为 1. 24
 

Hz
(74. 4

 

bpm),与参考频率基本一致。 此外,在静息状态下,
ALA-SVMD 方法展现出更为清晰的频谱,能够有效分离呼

吸和心跳信号。 相比之下,其他方法在频域上存在一定的

信号重叠或频率偏移,影响了分离精度,尤其是在低频区

域,表现出较差的信号分离效果。 在深呼吸状态下,ALA-
SVMD 方法仍能精确捕捉到呼吸信号,并有效分离心跳信

号,其他方法则在复杂的深呼吸模式下出现较大的频谱扩

展,导致信号分离的准确性下降。 在运动后状态下,信号

的复杂性增加,尤其是在频谱分布上,心跳信号出现更大

的波动,但 ALA-SVMD 方法依旧能够较为稳定地分离两

种信号,且误差相对较小。 而其他方法在处理运动后状

态的信号时,误差显著增大。 这一结果充分说明了所提

方法在不同生理状态下均表现出较强的鲁棒性和较高的

信号分离精度,优于其他传统方法,尤其在深呼吸和运动

后状态下,能够有效应对信号的复杂变化。
此外,为研究不同休息时间对受试者运动后心率的

影响,本研究对受试者在运动后不同休息时间下的心率

进行了实验测量。 图 9 给出了 4 种方法对受试者在 4 种

不同休息时间下的心率频域分析结果。

图 9　 不同休息时间下受试者运动后心率估计结果

Fig. 9　 Post-exercise
 

heartbeat
 

rate
 

estimation
 

in
 

subjects
 

with
 

different
 

rest
 

periods

从图 9 中可以观察到,随着休息时间的增加人体心

跳频率逐渐降低,但即使在 8
 

min 的休息后,人体目标的

心跳频率也比静息状态下高 20
 

bpm,这与人体运动后的

心跳速率增减实际情况完全一致。
3)

 

人体目标距离的影响

考虑到实际应用中受试者与 Wi-Fi 设备之间的距离

并不固定的实际情况,本研究还考察了人体与设备之间

距离的影响。 如图 10 所示,在每次实验中,同一受试者

被要求朝向 Wi-Fi 设备并坐在距离其 0. 5、1. 0 和 1. 5
 

m
不等的 3 个不同位置。 表 5 给出了同一受试者在不同距

离下的心率误差估计结果。

图 10　 不同人体目标距离的实验场景

Fig. 10　 Experimental
 

scenarios
 

with
 

different
 

human
 

target
 

distances

表 5　 不同距离下不同信号分离算法的心率误差估计结果

Table
 

5　 Heartbeat
 

rate
 

error
 

estimation
 

results
  

for
 

different
 

signal
 

separation
 

algorithms
 

at
 

different
 

distances
(bpm)

距离 / m 所提算法 EMD CEEMDAN VMD

0. 5 1. 48 3. 55 3. 55 3. 11

1. 0 1. 58 4. 66 4. 97 4. 33

1. 5 2. 94 4. 78 5. 90 4. 53

　 　 从表 5 中可以观察到,虽然随着距离的增加,各方法

的估计性能都有所下降,但本研究所使用方法在各种距

离测试结果上都保持领先。 这主要得益于 ALA 优化算

法能够自适应地选择最优的分解参数来分离提取生命信

号,有效抑制了干扰和噪声的影响。
通过上述综合实验,证实了 ALA-SVMD 方法在复杂

环境下具有优异的信号分离能力和较强的鲁棒性。 该方

法不仅能准确分离呼吸和心跳信号,而且对生理状态的

变化具有良好的适应性,为非接触式生命体征检测提供

了可靠的技术支持。

4　 结　 　 论
 

　 　 本研究提出了一种基于逐次变分模态分解( SVMD)
的生命体征信号分离与频率检测算法。 首先,通过 Wi-Fi
设备采集原始 BFI 数据,并进行解压缩重构获得 BFM 矩

阵。 然后,计算其中每一对元素的比值生成 BFM-ratio,
并对选定的 BFM-ratio 数据流进行带通滤波器和小波去

噪处理。 其次,从中选择出最优子载波信号,并在进一步

的数据处理后,通过 SVMD 算法从中提取出目标生命信

号。 最后,通过快速傅里叶变换和峰值检测实现了呼吸

率和心率的精确估计。 大量实验结果表明,该方法相比

传统方法在多种复杂环境下均表现出良好的检测性能和



72　　　 仪　 器　 仪　 表　 学　 报 第 4 6 卷

鲁棒性,在存在多径效应和环境噪声干扰时,仍能保持稳

定的检测性能。 本研究为基于 Wi-Fi 信号的非接触式生

命体征检测技术的发展提供了新的研究思路,在智能医

疗、远程监护等领域具有重要的应用价值。
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