DOI: 10. 19650/j. cnki. cjsi. J2209701

基于机器视觉的 PCB 缺陷检测算法研究现状及展望*

吴一全,赵朗月,苑玉彬,杨 洁

(南京航空航天大学电子信息工程学院 南京 211106)

摘 要:印刷电路板(PCB)是电子零件的基板,需求量极大,承载着电路元件和导线的布局,其优良与否对电子产品的质量有着 重要影响。由于电子产品的制作逐渐趋于轻薄、精小,基于机器视觉的 PCB 缺陷检测已成为一个具有挑战性的问题。为了加 深研究人员对 PCB 缺陷检测的理解,本文从传统图像处理方式、传统机器学习及深度学习 3 大维度全面回顾了近 10 年基于机 器视觉的 PCB 缺陷检测算法,并分析其优缺点;介绍了 9 个 PCB 数据集,给出了评价 PCB 缺陷检测算法的性能指标,且在 PCB 数据集及流行的小目标数据集上分别对典型的算法进行了对比分析;最后指出了 PCB 缺陷检测算法目前存在的问题,展望了 未来可能的研究趋势。

Research status and the prospect of PCB defect detection algorithm based on machine vision

Wu Yiquan, Zhao Langyue, Yuan Yubin, Yang Jie

(College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract: As the substrate of electronic devices, the printed circuit board (PCB) is in high demand. It carries the layout of circuit components and wires, which has a significant impact on the quality of electronic products. Because electronic devices are thin and compact, PCB defect detection using machine vision is difficult. This article examines PCB defect detection algorithms based on machine vision in recent 10 years from three perspectives, including classical image processing, traditional machine learning, and deep learning. The advantages and disadvantages are analyzed to improve researchers' understanding of PCB defect detection. Nine PCB data sets and performance evaluation indexes are introduced. The advanced algorithms are compared and analyzed on PCB data sets and popular small target data sets, respectively. Finally, the current challenges with the PCB defect detection method are discussed and future research objectives.

Keywords: PCB; defect detection; machine vision; deep learning; data set; performance analysis

0 引 言

随着电子制造业的发展,电子产品趋向于多功能化、 智能化、小型化。作为电子产品重要的精密零部件,印刷 电路板(printed circuit board, PCB)扮演着骨架的角色, 承载着电路元件和导线的布局,可以说 PCB 及其上焊接 的组件的质量与产品性能是唇齿相依的。随着集成电路 (integrated circuit, IC)封装技术的飞速发展,电子产品也 逐渐变得轻薄、精小,同时这也使得 PCB 上的布线越来 越拥挤,因此,对 PCB 的质量要求也越来越高。为了保证电子设备的性能,PCB 缺陷检测技术已成为现代电子产品行业中一项非常关键的技术^[1]。

在印制 PCB 时,需要经过十几道复杂的工序,但即 使严格把控每一道工序,也无法保证百分之百的良品率, PCB 上可能会存在诸多缺陷,如:"missing hole(缺孔)"、 "mouse bite(鼠咬)"、"open circuit(开路)"、"short (短路)"、"spur(毛刺)"、"spurious copper(假铜)"。 PCB 作为载体用于电子产品时,常采用表面贴片安装 技术(surface mount technology, SMT),贴片元器件往往

收稿日期:2022-04-27 Received Date: 2022-04-27

^{*}基金项目:国家自然科学基金(61573183)项目资助

位置偏移。

如今,根据 PCB 缺陷的类型,已经研究与开发出了一 些符合工业生产要求的检测方法,如人工目视法、仪器线上 检测法、功能测试法、视觉检测法。其中视觉检测法包含:自 动光学检测技术^[2](automated optical inspection, AOI)、机器 视觉检测技术^[3](machine vision inspection, AVI)、自动视觉 检测技术^[2](automated visual inspection, AVI)。以上方法 各有千秋,但显然传统的目视方法已经不能满足现代 化产业的需求,其存在诸多主观不足因素,如疲劳、速 度、成本等;线上检测法成本低,易操作,但编程调试异 常耗时;功能测试法需在生产线中、末端配备专门的测 试设备,且编程复杂,难推广^[4];基于上述方法的局限 性,视觉检测技术因其成本低、效率高已作为眼下 PCB 质检的主流方式。本文主要综述各种先进的基于机器 视觉的 PCB 缺陷检测方法。

鉴于国内关于 PCB 的缺陷检测方法的综述文章极 少,本文对近十年来的文献进行了分析归纳。与文 献 [5]不同的是,本文不仅总结了国内外 PCB 缺陷检测 的相关文献,还给出了公开的 PCB 数据集及算法评估指 标,并针对典型的 PCB 数据集分析了经典算法性能,探 讨了算法在检测柔性印刷电路板(flexible printed circuit board, FPCB)上缺陷时的性能,同时研究了一些典型算 法在流行的小目标数据集上的性能。

1 基于传统图像处理方式的 PCB 缺陷检测 方法

在机器学习方法流行以前,对于 PCB 缺陷检测问题 主要应用传统的图像处理方式进行检测,这些方式主要 包含4种:傅里叶变换、主成分分析、小波变换、图像模式 匹配。这4种方法并非相互独立,它们相互结合,相互渗 透,共同组成了基于非分类器的 PCB 缺陷检测方法,其 中最常见的是,将其他方法融合在图像模式匹配中进行 PCB 的质量检测。文献[6]与[7]已对图像模式匹配方 法进行了综述,从中可以看出,图像模式匹配方法主要分 为:基于区域的匹配和基于特征的匹配。图像序列中对 应像素差的绝对值(sum of absolute differences, SAD)或 平均绝对差值^[8](mean absolute error, MSE)、图像的相关 性^[9](normalized cross correlation, NCC)和相位相关^[10]是 基于区域匹配的典型度量。傅里叶变换^[11]、Hausdorff 距 离^[12]和尺度不变特征变换^[13](scale invariant feature transform, SIFT)是基于特征的匹配方式。 Cho 等^[14]为了识别不正确装配的 PCB 组件,使用了 一种模式匹配方法,利用离散小波变换缩小 PCB 组件标 准图像的尺寸,缩短了计算时间,实验表明采集图像时光 线变化对该方法的影响较小,但对于一些纹理丢失图像 的检测结果不佳。Hagi 等^[15]利用相位相关对 PCB 裸板 进行对齐,然后应用图像相减法识别缺陷。Loch 等^[16]、 Szymanski 等^[17]PCB 电子元器件缺陷的 SIFT 进行了评 估,但实时性不佳。Dai 等^[18]使用了 SIFT 提取算法,并 结合了粒子群优化,对传送带上的 PCB 图像进行匹配, 实验证明,该算法具有更强的鲁棒性和效率。

Wang 等^[19]提出一种局部信息 NCC 来检测 IC 图像 缺陷,其仅使用邻域窗口中的显著点来计算 NCC,较好地 降低了误报率。Su 等^[20]先使用 NCC 定位倒装芯片焊接 凸点的中心,然后提取了焊接凸点的特征进行缺陷检测, 得到较优的检测性能。然而,NCC 虽被广泛应用于机器 视觉的工业检测中,但其计算量大,难以实现实时检测, 针对此缺点, Annaby 等^[21]提出了一种改进的低复杂度 NCC 用以定位 PCB 上缺失的 IC,匹配时将二维子图像转 换为一维特征描述符,并对生成的特征描述符进行离散 余弦变换(discrete cosine transform, DCT),在变换域实现 NCC,不仅提高了计算速度,而且对噪声具有鲁棒性。 Tsai 等^[22]提出了一种图像对齐的 E-M (expectationmaximization)方法用于 PCB 的质量检测,与传统的 NCC 使用窗口遍历整幅图像相比,该方法只需将待测图像的 窗口固定在与模板相同的位置即可,减小了计算成本,且 该算法对旋转角度的变化非常敏感,增加了寻找旋转角 度的计算过程。随后 2019 年, Tsai 等^[23]又提出了全局傅 里叶图像重建方法,用来检测和定位 PCB、IC 这类非周 期模式图像中的微小缺陷,该方法改进了传统模式匹配 需依赖局部像素和傅里叶变换仅用于周期纹理的情况, 并且克服了旋转问题,对光照变化不敏感,可以检 测1 pixel 宽的微小缺陷。

Xie 等^[24]提出了一种检测焊点的统计外观模型 (statistical appearance model, SAM)。首先,利用单一高 斯模型对合格焊点图像进行训练,建立统计模板;然后, 将焊点图像与模板逐像素进行匹配,得到差值图像,最 后,通过计算差值图像中不匹配像素的个数来识别缺陷。 实验结果表明,该模型效率较高,但是,这种方法只使用 一个固定模板,导致焊点的检测性能不理想。为了解决 这一问题, Cai 等^[25]提出了一种基于 ViBe (visual background extraction)算法的 IC 焊点检测方法。通过对 合格的 IC 焊点图像进行训练,建立了 6 个 ViBe 固定模 板,然后将输入图像与模板进行比较,检测 IC 焊点图像 中潜在的缺陷,实验结果表明,该方法具有合理的执行 时间和较高精度。除此以外,Cai 等^[26]在中,建立了混合 高斯模型(Gaussian mixture model, GMM)来模拟合格焊 点图像中像素的真实分布,与文献[25]不同的是,他们 通过混合几种高斯分布,对 SMT 焊点图像序列中每个像 素位置的变化值进行建模,实验表明,基于 GMM 的检测 方法在 SMT 焊点检测中也取得了令人满意的效果。虽 然文献[25]和[26]中基于统计建模的方法对焊点的检 测性能较好,但它们没有探索任何先验知识,这对于基于 视觉的方法来说往往是很重要的。随后, Cai 等^[27]将 IC 焊点检测定义为一个优化问题,使用基于鲁棒主成分分 析(robust principal component analysis, RPCA)对焊点的 低秩分量进行分解,并结合了感兴趣区域的位置先验知 识,以便更好地检测 IC 焊点质量,然而,众所周知, RPCA 是一种非常复杂的数学方法,比较耗时且难以理解,目前 还没有关于 RPCA 在实际工业中的应用的报道。虽然文 献[25]中使用了多个模板,一定程度地改善了 IC 焊点检 测的性能,但固定模板问题仍然存在,由于有限的固定模 板很难表征 IC 焊点的所有外观,影响检测精度,因此,与 文献[27]相似,Ye 等^[28]也使用了优化问题的思想,使构造的模板可以自适应地表征每个 IC 焊点,该优化问题由弹性网络解决。受文献[25]启发,针对其存在的固定模板问题,Li 等^[29]利用更多的 ViBe 模板对合格的 IC 焊点 图像进行统计模型训练,然后,结合模板聚类和随机模板策略,构造一个均衡的潜在缺陷图像(potential defect image, PDI)的评价集,使用优化后的 PDI 对 IC 焊点图像质量进行评估。

由上可以看出,在工业检测应用中传统的模板匹配 方法对平移和光照敏感,只能检测较大尺寸的缺陷,基于 傅里叶的特征提取和图像重建技术只能检测均匀纹理或 周期性图案表面的局部缺陷,基于小波的缺陷检测方法 也主要关注均匀纹理表面的缺陷检测。因此在实际检测 中可结合各种方法的特点,以提高 PCB 缺陷检测算法的 性能。

综上,主要方法对比如表1所示。

	表 1 基于传统图像处理方式的 PCB 缺陷检测主要方法对比	
Table 1	Comparison of main methods of PCB defect detection based on traditional image processir	ıg

	-		8 I 8
文献	具体方法	优势	局限性
文献[19]	局部信息 NCC 法	减少了一定计算量,使用邻域窗口中的显著点来计算 NCC, 较好地降低了误报率	与其他图像匹配方法相比 计算量较大
文献[21]	低复杂度 NCC 法	减少了一定计算量,在变换域实现 NCC,计算速度快,对噪声具有鲁棒性	与其他图像匹配方法相比 计算量较大
文献[22]	图像对齐的 E-M 法	比传统 NCC 计算成本小	-
文献[23]	全局傅里叶图像重建法	无需依赖局部像素,对光照变化敏感,可以检测 1 pixel 宽的微小缺陷	-
文献[24]	一种统计外观模型	效率较高	固定模板,影响检测性能
文献[25]	ViBe 法	效率、精度高	固定模板,影响检测性能; 没有先验知识
文献[26]	混合高斯法	效率、精度高	没有先验知识
文献[27]	鲁棒主成分分析法	提高了 IC 焊点的检测性能	比较耗时且难以理解

2 基于机器学习的 PCB 缺陷检测方法

采用基于机器学习的方法对 PCB 进行缺陷检测时, 可分为传统的机器学习方式和深度学习的方式。

2.1 基于传统机器学习的 PCB 缺陷检测方法

采用传统的机器学习方式时,一般先对 PCB 图像进 行特征提取,如灰度、颜色、几何形状等特征,缺陷特征提 取环节主要是为后续分类提取出一些特征,并且在某些 情况下带来更好的可解释性^[30],然后再将这些特征输入 分类器进行分类。常用的 PCB 机器学习分类器包括支 持向量机(support vector machine, SVM)和各种传统的神 经网络。

Jiang 等^[31]提出了一种基于颜色生物特征的 PCB 锡 膏缺陷检测方法,使用生物启发颜色特征(biologically inspired color feature, BICF)来描述锡膏图像,然后引入 了一种名为 PNDA (positive-negative discriminative analysis)的子流形学习(sub-manifold learning, SML)方法 提取嵌入在外部高维空间中的本征低维 BICF 流形。 PNDA 既保留了局部的几何结构,又保留了整体的鉴别 特性,并且可将焊锡膏分为高质量和低质量两类。 Xue 等^[32]通过颜色特征对 PCB 板缺陷点进行定位、检 测。Kumar 等^[33]在 PCB 板的非铜件检测部分,使用 3D 非均匀颜色直方图进行缺陷检测,取得了较好的检测结 果。但因为颜色特征易受光照影响,使得该类方法的适 用范围较小。Wu 等^[34]从焊点图像中提取了 IC 焊点的 形状特征、数字特征和逻辑特征,用于检测 PCB 上回流 后的 IC 焊点缺陷。实验结果表明,该方法能够有效地识 别出 IC 的焊点缺陷,如多焊点、缺焊点、无焊点、引线指 起、引线弯曲、移位、桥接和伪接头等。Hua 等^[35]采用特 征跟踪角检测器和快速鲁棒特征描述子(speeded up robust feature descriptor, SURF)描述符进行图像特征的 提取,解决了哈里斯(Harris)拐角检测中拐角信息丢失、 位置偏移等问题,进而提高 PCB 板缺陷检测效率、精度。 苑玮琦等^[36]利用几何特征在柔性 PCB 板进行走线凸起缺 陷检测,有效地屏蔽噪声干扰,对 FPCB 图像凸起的走线进 行有效检测。Zhong 等^[37]先对柔性 IC(flexible integrated circuits, FICS)图像的背景与缺陷之间(即边缘区域)的每 个像素背景特征进行概率计算,然后实现包含黄色电路背 景、带斑点的薄膜背景和黑色背景的 FICS 图像缺陷分类。

文献[38-39]根据先验知识将 SMT 电路板焊点划分 为若干子区域,然后提取每个子区域的各种特征,利用 AdaBoost 算法对特征进行最优选择,最后采用基于分类 回归树(classification and regression trees, CART)将缺陷 检测定义为一种二叉决策树来确定最终的类型,实验表 明,该方法提高了检测速度。Wu 等^[40]提出了一种带有 特征选择方法的两阶段(贝叶斯和 SVM)分类器来检测 焊点。实验结果表明,该方法减少了需要提取的特征数 量、提高了精度。在提取了 PCB 焊点颜色及几何特征的 基础上,Wu^[41]又提出了一种随机森林集成的方法,对缺 陷进行分类,实验结果表明,该方法精度较高。Mak 等^[42]提出了一种基于贝叶斯的面向焊锡喷射球头部框 架装配过程的 AOI 专家系统,该系统由 3 个增强的朴素 贝叶斯网络概率分类器、一个检查分类器和一种图像处 理技术组成。他们提出的系统可以达到 91.52% 的准确 率。Tao 等^[43]提出了一种新型的级联自动编码器体系结 构,可用于缺陷的分割和局部化。Acciani 等^[44]的从输入 的焊点图像中提取几何特征,并将其送入多层感知机 (multilayer perceptron, MLP),用以检测焊点的质量,为了 达到更好的准确性,Acciani 等^[45]在文献[44]的研究基础 上进行了进一步的研究,提取 10 个几何特征和 8 个小波特 征作为 MLP 的输入,用于区分 5 种焊点缺陷。实验结果证 明,该方法虽然能取得较好的检测性能,但特征提取时,对 于焊点图像中的重要特征提取还是存在困难的。

在图像识别和目标检测中,神经网络已经取得了非 常优秀的结果^[46]。Meyer等^[47]建立了一个神经网络框 架,包括反向传播(back propagation, BP)神经网络和径 向基函数神经网络来预测球栅阵列焊点的质量和可靠 性。Wu^[48]采用基于 Levenberg Marquardt 反向传播神经 网络的截面积、湿润高度和接触角特征对焊点进行检测。 上述基于分类器的方法成功地检测了一些类型的片状元 件,如片状电容器,但对于 SMT 焊点这类小尺寸缺陷时, 检测精度不高。Wu 等^[49]提出了一种基于 BP 神经网络 和遗传算法的 SMT 印刷电路焊点缺陷诊断方法,在对特 征进行分类前,引入遗传算法来选择和去除冗余的输入 特征,以此避免神经网络过拟合问题,实验结果表明,输 入特征的数量减少,检测速度提高。

综上,主要方法对比如表2所示。

	表 2	基于传统机器学习方式的 PCB 缺陷检测主要方法对比	
Table 2	Comparison of	nain methods of PCB defect detection based on traditional machine learning	g

	-		0
文献	具体方法	优势	局限性
文献[31]	基于生物启发颜色特征及流形法	保留了局部几何结构及整体鉴别特性,可将焊锡膏 分为高质量和低质量两类	-
文献[37]	边缘区域像素背景特征概率计算法	可对黄色、带斑点和黑色背景的 FICS 图像进行缺陷分类	-
文献[35]	特征跟踪角检测器结合 SURF 描述符法	效率及精度高,解决了 Harris 拐角检测中拐角 信息丢失、位置偏移等问题	-
文献[40]	贝叶斯结合 SVM 法	效率及精度高,减少了需要提取的特征数量	-
文献[41]	随机森林法	效率及精度高	-
文献[49]	BP 神经网络结合遗传算法	效率及精度高,可检测小尺度缺陷	-
文献[42]	Naïve 贝叶斯法	准确率高	-
文献[45]	多层感知机法	准确率高	提取焊点图像中的重要 特征时较困难

2.2 基于深度学习的 PCB 缺陷检测方法

对于 SMT 焊点缺陷小的特点, Cai 等^[26]提出了一种用 于自适应学习焊点图像感兴趣区域(region of interest, ROI) 的级联卷积神经网络。该方法将学习到的 ROI 和 SMT 焊点图像输入至两个卷积神经网络(convolutional neural network, CNN),然后,通过级联学习的 CNN 得到了较优的检测结果。随后,Cai 等^[50]提出了一种使用了 3 个 CNN 的级联网络用于检测 SMT 焊点,一个 CNN 进行自适应的学习图像 ROI,然后与输入图像一起送入其他两 个 CNN 中,该方法不需要提取底层特征,且精度高,具有

5

泛化性,可适应于其他目标检测任务中。Park 等^[51]针对 检测图像小于训练图像而导致的 CNN 性能下降问题,设 计了 MarsNet,该网络通过改进膨胀残留网络(dilated residual network, DRN)获得更高分辨率的特征图,并设 计了水平垂直池化(horizontal vertical pooling, HVP)收集 特征图中的位置信息,提高了池化效率,且采用多标签评 分模块和阈值估计模块实现多标签分类,最后在锡膏检 查(solder paste inspection, SPI)图像上验证了网络具有 良好的性能。同年, Park 等^[52]针对焊膏缺陷(defective solder paste pattern, DSPP)图像(从 SPI 图像中获得)的 稀疏性、大小不一、数据集有限等原因,对传统 CNN 进行 改进,提出了一种双层缺陷检测点网 D3PointNet 检测 DSPP 图像上的锡膏打印缺陷。该网络从 DSPP 图像中 提取点云特征,然后在微观和宏观两个语义层次上进行 缺陷检测,在微观层面上,通过分割来识别每个点的缺陷 类型,在宏观层面上,采用多标签分类方法对 DSPP 图像 中出现的各种打印机缺陷进行识别。与上文中的 MarsNet 及其他 CNN 模型相比, D3PointNet 对输入数据 的稀疏性和大小变化具有更强的鲁棒性。Chan 等^[53]对 IC 焊接质量进行检测时,提出了一种结合机器学习和人 类判断的检测框架,该检测框架结合了 CNN、SVM 和圆 形霍夫变换(circle Hough transform, CHT)算法,并设定 阈值切换使用人工检测。实验结果表明,与经典的 CNN 和其他常用的分类器相比,所提出的框架分类结果更佳。 针对 FPCB 缺陷的非显著性且不同种类之间的相似性, Luo 等^[54]提出了一种基于 CNN 解耦框架,其中定位任务 和分类任务通过两个特定模块进行解耦。并为了有效地 定位非显著性缺陷,在定位时,提出了一种多层聚合块作 为定位特征增强模块,同时,为了准确分类相似的缺陷,在 缺陷分类任务中提出局部非局部块作为 SEF 增强模块。 与现有的表面缺陷检测网络相比,该框架的平均精确度 (mean average precision, mAP)达到了 94.15%。

Wu 等^[55]提出了一种使用 Mask RCNN 进行焊点缺陷识别的方法,可同时实现焊点缺陷的分类、定位和分割。在训练骨干网络时,加入了迁移学习的方法,使用小目标数据集(MS-COCO)进行初始化训练,实验结果表明,该方法可达到 100%的分类正确率,以及 90% 以上的分割正确率。同年 Wu 等^[56]为了更快地生成 SMT 焊点 掩膜,以便高效且低成本的对 SMT 焊点缺陷进行定位, 使用一种新方法对 Mask RCNN 进行训练,可半自动的生 成掩膜。该方法使用基于图割的图像分割输出像素级的 结果,然后通过图像变换获得图像掩膜。该方法可以应 用于自动光学检测设备,也可以很容易地扩展到其他训 练中需要图像标注的领域。

针对 PCB 缺陷检测误检率和漏检率高、效率低的问题, Ding 等^[57]在 Faster R-CNN 的基础上提出了微小

缺陷检测网络(tiny defect detection network, TDD-Net), 该网络采用 ResNet-101 作为骨干,通过特征金字塔网 络(feature pyramid networks, FPN)进行特征融合,使用 多种 PCB 缺陷"anchor"尺寸(152、252、402、602、802), 并在公共 PCB 缺陷数据集上取得了较好的检测结果, 实验证明,该网络具有较强的鲁棒性和泛化性。 Hu 等^[58]在 Faster RCNN 的基础上进行改进,使用 GARPN 代替区域生成网络(region proposal network, RPN),自适应地生成锚点,且为了加快网络速度,结合 了 ShuffleNetV2 中的剩余单元,实验结果表明,改进后 的模型 mAP 及检测速度均有所提高。Li 等^[59] 在检测 PCB 双列直插式组件缺陷时将 Faster RCNN 和 YOLOv2 集成起来,并安装在 AOI上,提高了检测率并降低了误 报率。然而,当该方法应用于其他生产线时,由于环境 的变化,如光照、进样方向、机械偏差等,导致检测性能 下降。次年,Li等^[60]针对上述问题,提出了一种重新训 练机制,直接从异常中进行学习,并成功应用于3条生 产线,实现了各生产线 PCB 板焊接缺陷的高效检测、异 常数据采集和检测模型优化。

针对 PCB 缺陷小且对比度低的特点,Lin 等^[61],设计 了边缘多尺度反向注意网络(edge and multi-scale reverse attention network, EMRANet),在特征提取过程中,设计了 一种新的金字塔边缘模块和一种可以获得不同尺度和分 辨率特征的多尺度融合(multi-scale fusion, MSF)模块。 此外,在特征融合过程中,设计了尺度模块(spatial channel domain reverse attention)模块和两个专门提取微 小和低对比度缺陷的新模块,融合了局部和全局特征。 实验表明,EMRANet 的性能优于现有的方法。Li 等^[62] 提出了一种扩展 FPN 的检测模型,该模型融合了高层与 底层语义信息,并引入了焦损函数。实验表明,该方法具 有良好的可移植性,准确率达到了 96.2%,但其虽然在人 工标记的 PCB 缺陷数据集上平均精度得到了提高,在面 对实际的工业生产(噪声干扰、曝光等)时,该网络性能 并不是最佳的。

综上,主要方法对比如表 3 所示。至此可以看出, 传统图像处理方式,如模板匹配方法只能对对象的位 置进行匹配,而传统的分类方法,如传统的机器学习方 法,只能对缺陷类型进行分类,但一些基于深度学习的 方法,如实例分割网络可同时对缺陷进行分类、定位和 分割。

3 数据集和性能评价指标

3.1 PCB 缺陷数据集

数据集在对象检测中发挥了关键作用,因为它们能 够在不同竞争算法之间进行标准的比较,并为解决方案

表 3 基于深度学习方式的 PCB 缺陷检测主要方法对比 Table 3 Comparison of main methods of PCB defect detection based on deep learning

文献	具体方法	优势	局限性
[52]	D3PointNet 法	对输入数据的稀疏性和大小变化具有更强的鲁棒性	_
[54]	CNN 解耦框架法	对非显著性缺陷友好,精度高	-
[50]	3个 CNN 级联法	具有泛化性,不需要提取底层特征, 精度高	-
[56]	新型 Mask RCNN 训练机制	具有泛化性,可半自动的生成掩膜,具有泛化性	-
[62]	扩展 FPN 法	具有泛化性,准确率高	易受噪声干扰、曝光等影响
[57]	TDD-Net 法	误检率和漏检率低、 效率高,具有较强的鲁棒性和泛化性	-
[58]	改进的 Faster RCNN 法	误检率和漏检率低、效率高	-
[60]	新型 Faster RCNN 和	误检率和漏检率低、效率高,	
	YOLOv2 训练机制	已在3条生产线上进行应用	
[61]	EMRANet 法	可以获得不同尺度和分辨率特征的 MSF 模块, 对微小和低对比度缺陷友好	-

设定目标。现已发布了一些关于 PCB 的公开数据集包 括 PCB Defect^[63]、PCB Defect-Augmented^[57]、 FICS-PCB^[64]、PCB DSLR^[65]、PCB-METAL^[66]、DEEP PCB^[67]、 HRIPCB^[68]等,详见表4。图1展示了 PCB Defect 数据集 中的缺陷类型。

3.2 性能评价指标

1)精度、查全率和平均精确度评价 PCB 缺陷检测的 性能时有 3 个常用的指标,即精度(precision)、查全 率(recall)和平均精确度(mAP)。Precision 是检测到的 正确结果与所有实际检测到的结果间的比率,Recall 是 检测到的正确结果与所有应检测到的结果间的比率, mAP 是各类预测正确的结果占总样本数的平均值。

$$Recall(TPR) = \frac{TP}{TP + FN}$$
(1)

$$Precision(PPV) = \frac{TP}{TP + FP}$$
(2)

$$AP = \frac{\sum PPV}{n} \tag{3}$$

$$mAP = \frac{\Sigma AP}{m+1} \tag{4}$$

式中:n为总样本数,m为类别数,其余参数定义如表5 所示。

mAP 是许多目标检测数据集常用的评价指标。在 PASCAL-VOC 中 mAP 为 重 叠 度 (intersection over union, IoU)等于 0.5 时的值;在 MS-COCO 数据集中,以 0.05 为间隔计算[0.5,0.95]间 10 个不同 IoU 的 mAP, 且在 MS-COCO 中还分别计算了小型、中型和大型目标的 精确度(average precision, AP);KITTI 数据集中计算了不 同检测难易度的 mAP。具体指标如表 6 所示。

(c) Open

(d) Short

(1) 限刑 (e) Spur (f) Spurious copper 图 1 PCB 缺陷示意图 Fig. 1 The images of PCB defect

表 4	PCB 缺陷数据集
Table 4	PCB defect datasets

数据集	介绍	标注
PCB Defect	该数据集由北京大学人机交互开放实验室发布,是一种合成的 PCB 数据集,共有 1 386 张图像,包含 有 6 种缺陷(missing hole, mouse bite, open circuit, short, spur, spurious copper),可用于检测、分类和 配准任务。数据集下载地址为:http://robotics.pkusz.edu.cn/resources/dataset/	\checkmark
PCB Defect-Augmented	该数据集是 PCB Defect 数据集的增强版,共有 10 668 张图像和相应的注释文件,将原始数据集的高 分辨率图像裁剪为 600×600 个子图像,划分为训练集(9 920 张)和测试集(2 508 张)。数据集下载 地址为:https://www.dropbox.com/s/h0f39nyotddibsb/VOC_PCB.zip? dl=0	\checkmark
FICS-PCB	该数据集由佛罗里达大学的安全与保证实验室收集,共有9912 张图像,由31 个 PCB 样本(购买或 各种设备上拆卸)合成而来,有4种版色(绿、红、蓝、黑),包含77 347 个 PCB 组件(IC、电容、电阻、电 感、晶体管、二极管)图像。数据集下载地址为:https://www.kaggle.com/datasets/dhruvmak/fics-pcb	\checkmark
PCB DSLR	该数据集包含 748 张 PCB 图像(各种设备上拆卸),所有图像都带有准确的 PCB 分割信息以及所有 IC 芯片(共计9 313 个样本)的边界框信息。为 1 740 个 IC 样本提供了标注文本信息。数据集下载 地址为:http://www.caa.tuwien.ac.at/cvl/research/cvl-databases/pcb-dslr-dataset/	\checkmark
PCB-METAL	该数据集包含 984 张 PCB 图像,由 123 种 PCB 样本采集而来,包含 12 231 个 PCB 组件,即 IC (5 844 件)、电容(3 175 件)、电阻(2 670 件)、电感(542 件)。该数据集可用于基于图像的 PCB 分析,如元器件检测、PCB 分类、电路设计提取等。	\checkmark
DEEP PCB	该数据集包含 1 500 个 PCB 图像对,包含有 6 种缺陷(Pin-hole, Mousebite, Open, Short, Spur, Spurious copper),每对图像包含一个 640×640 的无缺陷模板和有缺陷的待测图像。数据集下载地址为:https://github.com/tangsanli5201/DeepPCB	
Micro-PCB	该数据集包含 8 125 张 PCB 图像,由 13 个微型 PCB 样本采样而来,每个样本在相对于相机的 25 个不同位置进行采集,且每个位置进行了 5 次不同的旋转。数据集下载地址为:https://www.kaggle. com/datasets/frettapper/micropcb-images	-
PCB_Component_Detection	该数据集包含有1410张 PCB 图像,包含多种组件,即电容、电阻、变压器、线路滤波器等,可用于检测组件的缺失以及组件的方向错误。数据集下载地址为:https://www.kaggle.com/datasets/animeshkumarnayak/pcb-fault-detection	\checkmark
РСВ	该数据集包含 693 张 PCB 图像,包含有 6 种缺陷(Missing hole, Mouse bite, Open circuit, Short, Spur, Spurious copper),按照 7:1:2 的比例进行划分,同时包含 COCO 和 VOC 两种不同的标签。数据集下载地址为:https://aistudio.baidu.com/aistudio/datasetdetail/127210	\checkmark

	Table 5	Confusion ma	trix
类别		缺陷	非缺陷
缺陷		TP	FN
非缺陷		FP	TN

2) ROC、AUC 和 IoU

接受者操作特性曲线^[69] (receiver operating characteristic, ROC)曲线和曲线下的面积^[70](area under curve, AUC)也被用于测试检测性能。ROC 曲线描述 TP

与 FP 间的关系。图 2 为两条 ROC 曲线, ROC 曲线越接 近左上角,说明 FP 越低, TP 越高,模型越好。AUC 为评 价 ROC 曲线的指标,即 ROC 曲线下的面积。在使用 SSD 等模型的对象检测中,通常使用 *IoU* 来判断对象是否被 正确 检测。*IoU* 表示模型给出的边界框(detection result, DR)与真值(ground truth, GT)边界框间的重叠 率。如果 IoU 大于预定义的阈值(通常为 0.5),则认为 对象检测成功。

$$IoU = \frac{GT \cap DR}{GT \cup DR} \tag{5}$$

第43卷

表 6 mAP 的评价指标总结 Table 6 Summary of common evaluation metrics for mAP

指标	定义
PASCAL-VOC	IoU 为 0.5 时,20 个类别的平均精确度
	AP:IoU 分别为[0.5:0.05:0.95]时, 10个 AP 的平均精度
	AP50:IoU为0.5时的mAP
MS-COCO	AP75: IoU为 0.75时的 mAP
	APS:目标区域大小小于 322 时的 AP
	APM:目标区域大小在 322~962 时的 AP
	APL:目标区域大小大于 962 时的 AP
	mAP(easy):容易水平的 mAP
KITTI	mAP(mid):中等水平的 mAP
	mAP(hard):困难水平的 mAP

4 PCB 缺陷检测算法性能评估

本文从传统图像处理方式和机器学习两大维度总结 了 PCB 缺陷检测的方法。基于对 PCB 缺陷检测算法的 分类,分别在表 7 和 8 中展示了一些最先进的机器学习 算法在 PCB Defect 数据集上的检测结果,表 9 展示了一 些算法在 FPCB 数据集^[71]上的性能比较,表 10 和 11 中 展示了一些算法在公共数据集 MS-COCO 和 PASCAL-VOC 上的性能对比。

如表7所示,列出了一些算法在6种缺陷上测得的 AP和mAP。在监督学习部分,HOG+SVM、LBP+SVM和SIFT+BOW+SVM算法对于多类缺陷的识别准确率 较低,这些基于浅层特征的方式所得的mAP值要明显低 于使用深度特征的方法(第2,3,4,5行),以"Mouse bite" 为例,基于 AlexNet+SVM 方法的 AP 要比其他 3 种至少 高出一倍多,对于这样显著地增长,可说明深度特征学习 的性能更好。6 种缺陷中,"Missing hole"类别较容易检 出,MLDN 的 AP 最高达到 99.6,而"Open circuit"类别特 征不容易捕获,特征较少,因此 AP 最高达到 97.3。由于 PCB 这几种缺陷都较小,文献[78]中结合偏振信息和红 外信息的模型获得了较高的 mAP。对比各种骨干网络 发现"ResNet101 + FPN"表现最佳在 PCB defect 数据集 上 mAP 为 96.2%。

表8参考于文献[62],比较了一些网络在不同 IoU 下的性能。表中 MLDN^[78]在 Faster RCNN 的基础上扩展 了 FPN,其 mAP 值为 96.2%,比 Faster RCNN 高 5.4%, 比 UF-Net 高 0.6%,这是因为 Extended FPN^[62]扩展了 FPN 网络,融合了多尺度的特征,提高了网络性能,如表 8 中所示,使用了 FPN 的网络与原网络相比性能得到了 提升,但耗时会增加,即 *FPS* 会变小,如 Extended FPN (ResNet-101-FPN)的 FPS 为 13.5,原 Faster RCNN 的 *FPS* 为 39.7。MLDN 在 MobileNet 的基础上进行改进,性 能与 Thundernet 相似,但因为 Backbone 中融合了 MSAM 和 C-PAnet,所以其精度更高,而 YOLOv3-tiny 的速度优 势显著,但精度相较于其他网络较低。对于工业上的 PCB 缺陷检测来说,速度是一项需要考虑的重要指标,但 精度问题则更为迫切。

表9引自文献[54],文中使用了 FPCB 数据集,给出 了宝贵的实验结论。由表9中可以看出,FPCB中 "Scratch"类型缺陷较难检测,SOTA与 Cascade RCNN、 Libra RCNN 在此类缺陷上性能较优,"Open"类型缺陷检 出率很高,检测起来最为容易。在表9中,突出了部分经 典网络添加 FPN 模块后的性能变化,这些网因融合了多 尺度特征或上下文语义信息性能皆有所提升。除此外, 还可以看出在相同的网络中使更强的 Backbone,mAP 值 也会相应增加,如 Faster RCNN、Cascade RCNN 及 Libra RCNN,Backbone 升级为 ResNet-101 后,mAP 分别提升了 0.4%,0.5%和0.8%。

表 10 中反应的是,在 80 个类别的 MS COCO 数据集 上所总结的一些典型分类器的检测性能,在大、中、小这 3 类检测物体中,大物体检测性能(AP_L)最佳,中物体 (AP_M)次之,小物体(AP_s)最差,这也说明了对于 PCB 缺 陷检测这类小目标物体检测的难度。其中 RetinaNet、 RefineDet512++、M2Det800、M2Det800++、Faster RCNN、 Libra RCNN、Mask RCNN、R-FCN++、Grid RCNN、SNIP、 SNIPER 的 *APS* 都达到了 20% 以上。RefineDet512++与 M2Det800++通过对 FPN 进行改进使特征更加融合,分别 将 AP_s 由 16.6%、22.1% 提升至 25.6%、29.2%。而 SNIPER 使用了多尺度特征, AP_s 提高至 29.6%。此外

	Table 7	Comparisor	of test results	s on the PC	B defect datas	set		
类别	方法/Backbone	mAP	Missing hole	Mouse bite	Open circuit	Short	Spur	Spurious copper
	HOG+SVM ^[72]	40.4	46.6	13.0	36.2	48.6	31.2	65.7
支持向量机	LBP+SVM ^[73]	56.2	44.4	27.5	56.9	82.2	44.2	82.1
又付问里饥	SIFT+BOW+SVM ^[74]	75.1	68.2	43.9	73.0	85.8	67.6	88.5
	AlexNet+SVM ^[74]	91.7	97.2	84.7	96.0	92.6	82.7	97.2
	SSD ^[75]	95.9	98.7	95.7	93.1	94.5	96.7	96.9
神经网络	YOLO ^[76]	92.6	92.6	93.1	90. 5	92.0	93.3	94.9
	Faster RCNN ^[77]	97.6	99.4	97.9	96.8	95.4	98.7	97.4
	EMRA-Net ^[61]	95.3	92.0	94.4	96.3	96.3	95.3	97.5
	RBCNN ^[68]	97.7	97.0	97.9	97.0	97.5	93.7	98.5
	MLDN ^[78]	97.2	99.6	97.6	97.3	97.5	91.1	100.0
	MLDN-V/I ^[78]	95.4	99.2	98.8	97.0	96.2	83.0	98.0
	MLDN-V/D ^[78]	95.7	98.1	96.3	96.6	95.9	88.6	98.7
	MobileNetv3+MSAM ^[78]	92.7	-	-	-	-	-	-
	MobileNetv3+MSAM+FPN ^[78]	94.4	-	-	-	-	-	-
	MobileNetv3+MSAM+PAnet ^[78]	95.2	-	-	-	-	-	-
D 11	VGG-16	80.2	80.5	76.2	70.3	81.3	79.3	78.6
Backbone	ResNet-50	81.6	86.7	81.8	80.1	87.9	84.9	83.2
	ResNet-50+FPN	91.5	94. 2	90.8	89.4	95.6	91.3	91.6
	ResNet-101	86.8	90. 7	86.2	82.7	89.4	86.9	87.3
	ResNet-101+FPN	96.2	97.1	95.2	93.2	98.4	95.6	96.3

表 7 PCB Defect 数据集上的测试结果比较 ble 7 Comparison of test results on the PCB defect datase

表 8 PCB Defect 数据集上不同 IoU 值下的测试结果比较 Table 8 Comparison of test results with different IoU values on the PCB defect dataset

	•				
方法	Backbone	FPS	mAP@ 0. 5	mAP@ 0. 6	mAP@ 0. 7
Faster RCNN ^[77]	ResNet-50	26.5	81.2	74.2	63.2
Faster RCNN	ResNet-50-FPN	-	86.4	-	-
Faster RCNN	ResNet-101	39.7	86.4	78.7	68.5
Faster RCNN	ResNet-101-FPN	-	90. 8	-	-
Faster RCNN	VGG-16	-	81.2	-	-
R-FCN ^[79]	ResNet-50	36.6	87.1	81.3	71.9
R-FCN	ResNet-101	30.2	90. 8	85.2	72.4
TDD-Net ^[57]	ResNet-101-FPN	26.7	94. 2	88.3	75.1
TDD-Net	ResNet-50	-	86.5	-	
TDD-Net	ResNet-101	-	89.7	-	
UF-Net	ResNet-101	33.5	95.6	90.1	80.3
YOLOv3 ^[80]	Darknet-53	19	75.8	61.3	45.1
YOLOv3	MobileNet	-	70.6	-	-
YOLOv3-tiny ^[80]	MobileNetv3	119.9	88.9	-	-
YOLOv4 ^[81]	CSPDarknet-53	11	79.6	66.8	51.3
ThunderNet ^[82]	ShuffleNetV2	41.6	90. 8	-	-
MLDN ^[78]	MobileNetv3+C-PAnet	42.6	96.2	-	-
SSD ^[83]	VGG-16	16.7	80.3	70.3	61.9
CornerNet ^[84]	Hourglass-104	31	85.6	74.6	64.3
CenterNet-Triplets ^[85]	Hourglass-104	29	87.2	75.2	65.1
ExtremeNet ^[86]	Hourglass-104	17	89.3	71.4	62.8
CenterNet ^[87]	ResNet-50	34	90.3	76.3	68.3
CenterNet	ResNet-101	42	91.5	78.2	71.5
RetinaNet ^[88]	ResNet-50-FPN	-	86.5	-	-
RetinaNet	ResNet-101-FPN	-	89.7	-	-
Extended FPN ^[62]	ResNet-50-FPN	7.6	93.4	90.5	84.9
Extended FPN	ResNet-101-FPN	13.5	96.2	93.1	86.3

Table 9 Comparison of test results on the FPCB-DET dataset										
方法	FPN	Backbone	mAP	Open	Short	Line damage	Pinhole	Broken hole	Exposed copper	Scratch
YOLOv3 ^[80]	×	Darknet-53	89.6	100.0	93.1	84.6	94. 8	94.6	89. 2	71.1
Faster RCNN ^[77]	×	ResNet-50	91.2	100.0	95.8	93.1	94. 7	97.0	87.6	69.8
Cascade RCNN ^[89]	×	ResNet-50	92.0	100.0	95.7	92.5	93.3	96.7	89.7	76.0
Grid RCNN Plus ^[90]	×	ResNet-50	91.7	100.0	96.3	91.3	95.6	96. 9	87.0	74.9
SOTA ^[54]	×	ResNet-50	94.2	100.0	97.7	92.5	96.4	97.4	91.5	83.4
RetinaNet ^[88]	\checkmark	ResNet-50	91.0	100.0	95.8	87.5	96. 9	97.2	90.3	69.5
FCOS ^[91]	\checkmark	ResNet-50	91.6	100.0	96.5	89.8	96.5	96. 9	89.7	71.9
ATSS ^[92]	\checkmark	ResNet-50	92.3	100.0	96.7	91.7	96.5	96.8	90.1	74.8
Faster RCNN	\checkmark	ResNet-50	92.8	100.0	97.5	92.7	97.4	95.7	88.4	78.1
Cascade RCNN	\checkmark	ResNet-50	93.1	100.0	97.3	94.1	97.6	95.4	90.1	77.2
Libra RCNN ^[93]	\checkmark	ResNet-50	92.8	100.0	97.6	92.8	97.3	94. 9	89.5	77.4
Grid RCNN Plus ^[90]	\checkmark	ResNet-50	92.8	100.0	97.2	92.7	97.3	97.0	89.0	78.9
RetinaNet	\checkmark	ResNet-101	91.7	100.0	95.1	87.2	96. 2	94.4	91.0	78.2
Faster RCNN	\checkmark	ResNet-101	93.2	100.0	97.3	91.4	97.3	97.5	89.1	79.7
Cascade RCNN	\checkmark	ResNet-101	93.6	100.0	97.5	93.3	95.8	95.7	90.0	83.1
Libra RCNN		ResNet-101	93.6	100.0	98.1	93.0	97.3	95.8	90. 5	80.5

表 9 FPCB-DET 数据集上的测试结果比较 Table 9 Comparison of test results on the FPCB-DET data

表 10 MS-COCO 数据集上的经典算法测试结果比较

Table 10	Comparison	of test	results o	f classical	algorithms	on	the M	IS-COCO	dataset
----------	------------	---------	-----------	-------------	------------	----	-------	---------	---------

方法	Backbone	AP	AP_{50}	AP ₇₅	AP_S	AP _M	AP_L
YOLOv2 ^[94]	DarkNet-19	21.6	44.0	19.2	5.0	22.4	35.5
SSD512 ^[83]	ResNet-101	31.2	50.4	33. 3	10.2	34.5	49.8
SSD512	VGG16	26.8	46.5	27.8	9.0	28.9	41.9
SSD300 ^[83]	VGG16	23.2	41.2	23.4	5.3	23.2	39.6
FSSD300 ^[95]	VGG16	27.1	47.7	27.8	8.7	29.2	42.2
FSSD512 ^[95]	VGG16	31.8	52.8	33.5	14.2	35.1	45.0
DSSD321 ^[96]	ResNet-101	28.0	46.1	29.2	7.4	28.1	47.6
DSSD513 ^[96]	ResNet-101	33.2	53.3	35.2	13.0	35.4	51.1
MDSSD300 ^[97]	VGG16	26.8	46.0	27.7	10.8	-	-
MDSSD300	VGG16	30. 1	50.5	31.4	13.9	_	-
RetinaNet ^[88]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RefineDet512 ^[88]	ResNet-101	36.4	57.5	39.5	16.6	39.9	51.4
RefineDet512++ ^[88]	ResNet-101	41.8	62.9	45.7	25.6	45.1	54.1
M2Det800 ^[98]	VGG16	41.0	59.7	45.0	22.1	46.5	53.8
M2Det800++ ^[98]	VGG16	44. 2	64.6	49.3	29.2	47.9	55.1
Faster RCNN ^[77]	ResNet-50-FPN	36.5	58.7	39.1	21.5	39.7	44.6
Faster RCNN	ResNet-101-FPN	36.2	59.1	42.3	21.8	42.7	50.2
Faster RCNN	ResNet-101-32×4d-FPN	40.5	62.8	44.0	24.3	43.9	50.2
Faster RCNN	ResNet-101-64×4d-FPN	41.7	64.1	45.4	25.0	45.1	52.1
Faster RCNN	MobileNetv2-FPN	32.6	54.6	34.3	18.6	34.5	41.0
Libra RCNN	ResNet-50-FPN	38.7	59.9	42.0	22.5	41.1	48.7
Libra RCNN	ResNet-101-FPN	40.3	61.3	43.9	22.9	43.1	51.0
Deformable R-FCN ^[99]	Inception-ResNet-v2	37.5	58.0	40.8	19.4	40.1	52.5
R-FCN++ ^[100]	R-FCN	42.3	63.8	-	25.2	46.1	54.2
Mask RCNN ^[101]	ResNet-50-FPN	37.5	59.4	40.6	22.1	40.6	46.2
Mask RCNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Grid RCNN ^[102]	ResNet-101-FPN	41.5	60. 9	44.5	23.31	44.9	53.1
SNIP ^[103]	DPN98 ^[104]	45.7	67.3	51.1	29.3	48.8	57.1
SNIPER ^[105]	ResNet-101	46.1	67.0	51.6	29.6	48.9	58.1

Faster RCNN 与 Mask RCNN 通过使用更强大的 Backbone 对 *AP*_s 都有一定的提升。

在表 11 中,总结了一些典型的分类器在 VOC2007 数据集上的性能。对比表 10 与 11 可以看出 MS-COCO 数据集的检测难度远大于 PASCAL-VOC 数据集^[106]。这 可能是因为 MS-COCO 数据集的每类图像数量大于 PASCAL-VOC 数据集,图像背景复杂,每张图片的目标 多^[107],且与 PASCAL-VOC 数据。

algorithms on the VOC-2007 dataset						
方法	Backbone	mAP				
Fast RCNN	VGG16	70.0				
Faster RCNN ^[77]	VGG16	73.2				
R-FCN ^[100]	ResNet-101	80. 5				
SSD512 ^[83]	VGG16	76.8				
SSD300 ^[83]	VGG16	74.3				
ION ^[108]	VGG16	79.2				
HyperNet ^[109]	VGG16	81.8				
FSSD300 ^[95]	VGG16	78.8				
FSSD512 ^[95]	VGG16	80.9				
DSSD321 ^[95]	ResNet-101	78.6				
DSSD513 ^[95]	ResNet-101	81.5				
MDSSD300 ^[97]	VGG16	78.6				
MDSSD300	VGG16	80.3				
RefineNet512 ^[88]	VGG16	81.8				
RefineNet512++ ^[88]	VGG16	83.8				
SAN ^[110]	R-FCN	80.6				
MRCNN ^[111]	VGG16	78.2				
ACCNN ^[112]	VGG16	72.0				
CoupleNet ^[113]	ResNet-101	82.7				
R-FCN++ ^[79]	R-FCN	81.2				
B-FCN	ResNet101	80.5				

表 11	VOC	-2007 数据	集上的	经典算	法测试	结果比较
Tab	le 11	Comparis	son of t	est resu	lts of cl	assical
algorithms on the VOC-2007 dataset						

5 存在的问题及展望

从上文可以看出,PCB 缺陷检测仍有广阔的发展空间。虽然目前已经提出了许多先进的算法,但由于 PCB 自身的属性,对于其缺陷的检测,仍存在一些难以避免的问题,具体如下所示:

1)小目标问题。对于 PCB 缺陷检测,首先要面对的问题就是小目标问题,PCB 上的缺陷及一些元器件都是

极小的,尤其对于裸盘上一些线路缺陷如开路、短路等都 是毫米级缺陷。但目前的目标检测算法大抵是针对大中 物体的,对于小目标检测效果不佳。一方面因为,PCB 缺 陷本身背景很复杂,不易将缺陷与背景分开,另一方面对 于所有的小目标物体来说,精确定位的要求更高。所以 对于 PCB 缺陷这类微小物体的检测,一直存在有技术 瓶颈。

2)小样本问题。工业生产中可以提供的缺陷样本有限,例如上述数据集中,许多缺陷种类是人工合成的,且 数量很有限,如 FICS-PCB 数据集仅从 31 个 PCB 样本上 采集。如今,很多检测网络都是在通用数据集上进行测 试的,这使得在面对实际问题时网络性能往往不佳。目 前对于小样本的问题有一些解决思路,如迁移学习将其 他一些目标检测网络迁移到 PCB 检测中;数据增强策略 通过数据增强弥补数据量不足的问题;多模态策略可融 合其他模态信息增强模型;无监督学习帮助算法摆脱对 数据集的依赖。虽然有以上诸多解决思路,但在 PCB 缺 陷检测中该问题仍旧存在,其可用的数据集很有限,且在 工业流水线上可采集到的缺陷类型和数量更有限,因此 小样本是 PCB 缺陷检测中一个亟待解决的问题。

3)复杂背景问题。前文中提到 PCB 的制作越来越精良,追求精小、轻薄,以至于其上的布线及焊接密度都 非常的大,PCB 缺陷又极小,这使得缺陷背景与前景难区 分,面临着复杂背景的问题。

4) 实时性问题。由于 PCB 缺陷目标小且背景复杂, 常采用高分辨率相机进行采集,得到的图片像素数目很 多,且对于目标小且背景复杂的物体,为了提高精度网络 结构容易过大,这些因素都会对工业流水线上的 PCB 质 检实时监控效率产生影响。

综上,虽然最近在 PCB 缺陷检测领域取得了可喜的 进展,但与人类认识水平相比,仍存在很大差距,需要做 的工作还很多,如以下几个方面:

数据集更新策略及其他。文中介绍了相关数据集, 根据文献情况可知,较为流行的数据集为 PCB Defect 与 DEEP PCB,但这些数据集中的图像数量及缺陷种类都很 有限,为提高 PCB 缺陷检测算法的精度,使算法更有通 用性,有必要研究一种大规模的数据集,当然这也是小目 标类检测的一个共同的发展方向。再者未来也可以研究 无监督学习,以减少对数据集的依赖。除此之外,迁移学 习和 GAN(generative adversarial network)也是一个不错 的选择。

多标签分类问题中的标签之间的相关性^[14]。多标 签分类又称多目标分类,用于 PCB 缺陷检测中时,既可 以预测输入图像中缺陷的类型,又可以预测该缺陷的严 重程度等属性。近年来,理解多标签问题中标签之间的 相关性已成为一个重要的研究方向。因此,在未来的工 作中,可利用图像中出现的标签之间的相关性来提高检测算法的性能^[51]。

模型再训练策略。有时在一条固定的生产线上训练 好的模型,一旦更换了生产线或改变了 PCB 上的排线布 局,模型的性能就会有波动,因此面对此类问题时,可考 虑使用再训练机制,如何在模型中加入再训练机制,以及 如何在一个系统上启动多个再训练过程,都是值得思考 的。此外,该怎样维持训练策略与实时性检测间的平衡 也是引人深思的^[60]。

多任务联合学习及多尺度特征融合策略。对于 PCB 这类目标较小的缺陷,可结合不同检测方法以提高检测 性能,且在特征提取时可以采用多尺度特征融合,以提高 小目标检测精度。具体来说,当同一个网络同时联合多 个任务,如目标检测、语义分割等,可大幅提高单任务算 法性能;众所周知,不同尺度的特征适合处理不同大小的 目标,多尺度融合对于缺陷较小的 PCB 来说是一个不错 的选择。所以多任务联合学习及多尺度特征融合也是 PCB 缺陷检测算法发展的一个不错的方向。

6 结 论

PCB 缺陷检测由于其目标较小、背景复杂、数据集有限在机器视觉领域中是一个具有挑战性的问题。本文从传统图像处理方式、传统机器学习及深度学习 3 大维度全面回顾了基于机器视觉的 PCB 缺陷检测算法。搜集了 9 个公开数据集,并在 PCB Defect 数据集上做了全面的算法比较,除此以外还在目前比较流行的小目标数据集如 PASCAL-VOC、MS-COCO 上对比分析了一些经典的目标检测算法。旨在能够为研究人员提供便利,可以快速地了解 PCB 缺陷检测这一课题的研究现状及一些先进的算法。

参考文献

[1] 曹亮. 基于机器视觉的电路板检测系统与方法的研究[D]. 哈尔滨:黑龙江大学, 2014.

CAO L. Research on circuit board inspection system and method based on machine vision [D]. Harbin: Heilongjiang University, 2014.

[2] 卢荣胜,吴昂,张腾达,等.自动光学(视觉)检测技术及其在缺陷检测中的应用综述[J].光学学报,2018,38(8):23-58.

LU R SH, WU ANG, ZHANG T D, et al. A review of automatic optical (vision) inspection technology and its application in defect detection [J]. Acta Optics Sinica, 2018, 38(8): 23-58.

[3] 机器视觉技术领衔产品尺寸外观检测[J]. 国外电子

测量技术, 2013, 32(2): 67-68.

Machine vision technology leads product size and appearance detection [J]. Foreign Electronic Measurement Technology, 2013, 32(2): 67-68.

- [4] 陈世哲. 微电子产品视觉检测中关键技术研究[D].
 哈尔滨:哈尔滨工业大学, 2006.
 CHEN SH ZH. Research on key technology of vision inspection of microelectronic products [D]. Harbin: Harbin Institute of Technology, 2006.
- [5] 董静毅, 吕文涛, 包晓敏, 等. 基于机器视觉的 PCB 板表面缺陷检测方法研究进展[J]. 浙江理工大学学 报, 2021, 45(3): 379-389.
 DONG J Y, LUY W T, BAO X M, et al. Research progress of the PCB surface defect detection method based on machine vision [J]. Journal of Zhejiang Sci-Tech University, 2021, 45(3): 379-389.
- [6] ZITOVA B, FLUSSER J. Image registration methods: A survey [J]. Image and Vision Computing, 2003, 21: 977-1000.
- [7] DESHMUKH M, BHOSLE U. A survey of image registration [J]. International Journal of Image Processing, 2011, 5(3):245-269.
- [8] MASHOHOR S, EVANS J R, ARSLAN T. Image registration of printed circuit boards using hybrid genetic algorithm [C]. IEEE International Conference on Evolutionary Computation, 2006:2685-2690.
- [9] SARVAIYA J N, PATNAIK S, BOMBAYWALA S. Image registration by template matching using normalized cross-correlation [C]. International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2009: 819-822.
- [10] FOROOSH H, ZERUBIA J B, BERTHOD M. Extension of phase correlation to subpixel registration [J]. IEEE Transactions on Image Processing, 2002, 11 (3): 188-200.
- [11] DUAN W, KUESTER F, GAUDIOT J L, et al. Automatic object and image alignment using Fourier descriptors [J]. Image and Vision Computing, 2008, 26(9): 1196-1206.
- [12] RUCKLIDGE W J. Efficiently locating objects using the Hausdorff distance[J]. International Journal of Computer Vision, 1997, 24(3):251-270.
- [13] LOWE D G. Distinctive image features from scaleinvariant keypoints[J]. International Journal of Computer Vision, 2004, 2(2): 91-110.

- [14] CHO H J, PARK T H. Wavelet transform based image template matching for automatic component inspection[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50 (9-12): 1033-1039.
- [15] HAGI H, IWAHORI Y, FUKUI S, et al. Defect classification of electronic circuit board using SVM based on random sampling [J]. Procedia Computer Science, 2014, 35: 1210-1218.
- [16] LOCH G N, SZYMANSKI C, STEMMER M R. Evaluation of SIFT in machine vision applied to industrial automation [C]. IEEE International Conference on Industrial Informatics (INDIN), 2013: 414-419.
- [17] SZYMANSKI C, STEMMER M R. Automated PCB inspection in small series production based on SIFT algorithm [C]. IEEE International Symposium on Industrial Electronics (ISIE), 2015: 594-599.
- [18] DAI L, GUAN Q, LIU H. Robust image registration of printed circuit boards using improved SIFT-PSO algorithm[C]. The Journal of Engineering, 2018(16): 1793-1797.
- [19] WANG C C, JIANG B C, LIN J Y, et al. Machine vision based defect detection in ic images using the partial information correlation coefficient[J]. IEEE Transactions on Semiconductor Manufacturing, 2013, 26 (3): 378-384.
- [20] SU L, SHI T, XU Z, at el. Defect inspection of flip chip solder bumps using an ultrasonic transducer [J]. Sensors, 2013, 13(12): 16281-16291.
- [21] ANNABY M H, FOUDA Y M, RUSHDI M A. Improved normalized cross-correlation for defect detection in printed-circuit boards [J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 199-211.
- [22] TSAI D M, HSIEH Y. Machine vision-based positioning and inspection using expectation-maximization technique[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(11): 2858-2868.
- [23] TSAI D M, HUANG C K. Defect detection in electronic surfaces using template-based Fourier image reconstruction [J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2019, 9(1): 163-172.
- [24] XIE H, KAUNG Y, ZHANG X. A high speed AOI algorithm for chip component based on image difference[C]. International Conference on Information

and Automation, 2009: 969-974.

- [25] CAI N, LIN J, YE Q, et al. A new IC solder joint inspection method for an automatic optical inspection system based on an improved visual background extraction algorithm [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(1): 161-172.
- [26] CAI N, YE Q, LIU G, et al. IC solder joint inspection based on the Gaussian mixture model [J]. Soldering & Surface Mount Technology, 2016, 28(4): 207-214.
- [27] CAI N, ZHOU Y, YE Q, et al. IC solder joint inspection via robust principle component analysis [J].
 IEEE Transactions on Components Packaging and Manufacturing Technology, 2017, 7(2):300-309.
- [28] YE Q, CAI N, LI J, et al. IC solder joint inspection based on an adaptive-template method [J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2018, 8(6): 1121-1127.
- [29] LI J, CAI N, MO Z, et al. IC solder joint inspection via generator-adversarial-network based template [J].
 Machine Vision and Applications, 2021, 32 (96): 341-348.
- [30] 赵朗月,吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J].仪器仪表学报,2022,43(1):198-219.
 ZHAO L Y, WU Y Q. Research progress of surface defect detection methods based on machine vision [J]. Chinese Journal of Scientific Instrument, 2022,43(1): 198-219.
- [31] JIANG J, CHENG J, TAO D. Color biological featuresbased solder paste defects detection and classification on printed circuit boards [J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2012, 2(9): 1536-1544.
- [32] XUE B, SUN C, CHU H, et al. Method of electronic component location, grasping and inserting based on machine vision-based on machine vision [J].
 Communications and Mobile Computing (IWCMC), Limassol, 2020;1968-1971.
- [33] KUMAR S, IWAHORI Y, BHUYAN M K. PCB defects classification using logical combination of segmented copper and non-copper part [C]. Proceedings of International Conference on Computer Vision and Image Processing, 2017, 459: 523-532.
- [34] WU F, ZHANG X. Feature-extraction-based inspection algorithm for IC solder joints[J]. IEEE Transactions on

Components Packaging and Manufacturing Technology, 2011, 1(5): 689-694.

- [35] HUA G L, HUANG W P, LIU H. Accurate image registration method for PCB defect detection [J]. The Journal of Engineering, 2018(16): 1662-1667.
- [36] 范玮琦,李德健,李绍丽. FPC 走线凸起缺陷检测方 法研究[J]. 仪器仪表学报,2018,39(4):170-180.
 FANG W Q, LI D J, LI SH L. Research on detection method of FPC Routing bulge defect[J]. Chinese Journal of Scientific Instrument, 2018, 39(4):170-180.
- [37] ZHONG Z, MA Z. A novel defect detection algorithm for flexible integrated circuit package substrates [J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 2117-2126.
- [38] 谢宏威,张宪民,邝泳聪. 基于图像特征统计分析的 PCB 焊点检测方法[J]. 仪器仪表学报, 2011, 32(2):401-407.
 XIE H W, ZHANG X M, KUANG Y C. Solder joint inspection method based on image feature statistical

analysis [J]. Chinese Journal of Scientific Instrument, 2011, 32(2): 401-407.

- [39] XIE H W, ZHANG X, KUANG Y. Solder joint inspection method for chip component using improved AdaBoost and decision tree [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(12): 2018-2027.
- [40] WU H, ZHANG X, XIE H. Classification of solder joint using feature selection based on Bayes and support vector machine [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(3): 516-522.
- [41] WU H. Solder joint defect classification based on ensemble learning [J]. Soldering & Surface Mount Technology, 2017, 29(3): SSMT-08-2016-0016.
- [42] MAK C W, AFZULPURKAR N V, DAILET M N, et al. A Bayesian approach to automated optical inspection for solder jet ball joint defects in the head Gimbal assembly process[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 1155-1162.
- [43] TAO X, ZHANG D, MA W, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks [J]. Applied Science, 2018, 9(8): 1-15.
- [44] ACCIANI G, BRUNETTI G, FORNARELLI G. Application of neural networks in optical inspection and

classification of solder joints in surface mount technology[J]. IEEE Transactions on Industrial Informatics, 2006, 2(3): 200-209.

- [45] ACCIANI G, BRUNETTI G, FORNARELLI G. Automatic detection of solder joint defects on integrated circuits[C]. Proc. IEEE ISCAS, 2007: 1021-1024.
- [46] 张鹏飞. 基于深度学习的目标检测与识别研究[D]. 沈阳:东北大学, 2017.
 ZHANG P F. Research on object detection and recognition based on deep learning [D]. Shenyang: Northeastern University, 2017.
- [47] MEYER S, WOHLRABE H, WOLTER K J. Neural network modeling to predict quality and reliability for BGA solder joints [C]. Proc. 60th ECTC, 2010: 1596-1603.
- [48] WU Z. Study on intelligent identification technology of solder joints defects based on LMBP neural network[C].
 Conference: Electronic Packaging Technology and High Density Packaging, 2011: 1-6.
- [49] WU H, ZHANG X, KUANG Y, et al. Solder joint inspection based on neural network combined with genetic algorithm [J]. Optik-International Journal for Light and Electron Optics, 2013, 124(20): 4110-4116.
- [50] CAI N, GEN G, WU J, et al. SMT solder joint inspection via a novel cascaded convolutional neural network[J]. IEEE Transactions on Components, 2018, 8(4): 670-677.
- [51] PARK J Y, HWANG Y, LEE D, et al. MarsNet: Multilabel classification network for images of various sizes[J]. IEEE Access, 2020, 8: 21832-21846.
- [52] PARK J M, YOO Y H, KIM U H, et al. D3PointNet: Dual-level defect detection pointNet for solder paste printer in surface mount technology [J]. IEEE Access, 2020, 8: 140310-140322.
- [53] CHAN K Y, YIU K F C, LAM H K, et al. Ball bonding inspections using a conjoint framework with machine learning and human judgement [J]. Applied Soft Computing, 2021, 102: 107115.
- [54] LUO J, YANG Z, LI S, et al. FPCB surface defect detection: A decoupled two-stage object detection framework [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
- [55] WU H, GAO W, XU X. Solder joint recognition components [J]. Packaging and Manufacturing Technology, 2020, 10(3): 525-530.

- [56] WU H, GAO W, XU X, et al. Semiautomatic mask generating for electronics component inspection [J].
 IEEE Transactions on Components Packaging and Manufacturing Technology, 2020, 10(12): 2099-2105.
- [57] DING R, DAI L, LI G, et al. TDD-net: A tiny defect detection network for printed circuit boards [J]. CAAI Transactions on Intelligence Technology, 2019 (4): 110-116.
- [58] HU B, WANG J. Detection of PCB surface defects with improved Faster-RCNN and feature pyramid network[J].
 IEEE Access, 2020(8): 108335-108345.
- [59] LI Y T, KUO P, GUO J I. Automatic industry PCB board DIP process defect detection with deep ensemble method[C]. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 2020: 453-459.
- [60] LI Y T, KUO P, GUO J I. Automatic industry PCB board DIP process defect detection system based on deep ensemble self-adaption method [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(2): 312-323.
- [61] LIN Q, ZHOU J, MA Q, et al. EMRA-Net: A pixelwise network fusing local and global features for tiny and low-contrast surface defect detection [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.
- [62] LI C J, QU Z, WANG S Y, et al. A method of defect detection for focal hard samples PCB based on extended FPN model [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 217-227.
- [63] HUANG W, WEI P. A PCB dataset for defects detection and classification [J]. Journal of Latex Class Files, 2018, 14(8): 1-9.
- [64] LU H, MEHTA D, PARADIS O, et al. FICS-PCB: A multi-modal image dataset for automated printed circuit board visual inspection [J]. Cryptology ePrint Archive, 2020, https://eprint.iacr.org/2020/366.
- [65] PRAMERDORFER C, KAMPEL M. A dataset for computer-vision-based PCB analysis [C]. 2015 14th IAPR International Conference on Machine Vision Applications (MVA), 2015: 378-381.
- [66] MAHALINGAM G, GAY K M, RICANEK K. PCB-METAL: A PCB image dataset for advanced computer vision machine learning component analysis [C]. 2019 16th International Conference on Machine Vision

Applications (MVA), 2019: 1-5.

- [67] STANG F, HE F, HUANG X, et al. Online PCB defect detector on a new PCB defect dataset [J]. ArXiv Preprint, 2019, Arxiv:1902.06197.
- [68] HUANG W, WEI P, ZHANG M, et al. HRIPCB: A challenging dataset for PCB defects detection and classification [J]. The Journal of Engineering, 2020, 13: 303-309.
- [69] MCCLISH D K. Analyzing a portion of the ROC curve[J]. Medical Decision Makin, 1989, 9 (3): 190-195.
- [70] BRADLEY A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern Recognition, 1997, 30 (7): 1145-1159.
- [71] LOU J, YANG Z, LI S, et al. FPCB surface defect detection: A decoupled two-stage object detection framework [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
- [72] LI Y F, LI S Y. Defect detection of bare printed circuit boards based on gradient direction information entropy and uniform local binary patterns [J]. Circuit World, 2017, 43(4): 145-151.
- [73] ZHANG C, SHI W, LI X, et al. Improved bare PCB defect detection approach based on deep feature learning[J]. The Journal of Engineering, 2018, 16(1): 1415-1420.
- [74] CHAUDHA R Y V, DAVE I R, UPLA K P. Automatic visual inspection of printed circuit board for defect detection and classification [C]. International Conference on Wireless Communications, Signal Processing and Networking, 2017: 732-737.
- [75] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector [C]. European Conference on Computer Vision (ECCV), 2016: 21-37.
- [76] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [J].
 Computer Vision and Pattern Recognition, 2016: 779-788.
- [77] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [C]. International Conference on Neural Information Processing Systems, 2015: 91-99.
- [78] LI M, YAO N, LIU S, et al. Multisensor image fusion for automated detection of defects in printed circuit

boards[J]. IEEE Sensors Journal, 2021, 21 (20): 23390-23399.

- [79] DAI J, LI Y, HE K, et al. R-FCN: Object detection via region-based fully convolutional networks [C]. Advances in Neural Information Processing Systems, 2016: 379-387.
- [80] REDMON J, FARHADI A. YOLOv3: An incremental improvement [J]. ArXiv Preprint, 2018, ArXiv: 1804.02767.
- [81] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. Arxiv Preprint, 2020, Arxiv:2004.10934.
- [82] QIN Z. ThunderNet: Towards real-time generic object detection on mobile devices [C]. IEEE International Conference on Computer Vision (ICCV), 2019: 6718-6727.
- [83] ZHU Y, URTASUN, SALAKHUTDINOV R, et al. SegDeepM: Exploiting segmentation and context in deep neural networks for object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 4703-4711.
- [84] HEI L, DENG J. Cornernet: Detecting objects as paired keypoints[C]. European Conference on Computer Vision (ECCV), 2020, 128(3): 642-656.
- [85] DUAN K, BAI S, XIE L, et al. CenterNet: Keypoint triplets for object detection [C]. International Conference on Computer Vision, 2019: 6569-6578.
- [86] ZHOU X, ZHOU J, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 850-859.
- [87] LAW H, DENG J. CornerNet: Detecting objects as paired keypoints [J]. International Journal of Computer Vision, 2020, 128(3): 642-656.
- [88] ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR), 2018: 4203-4212.
- [89] CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
- [90] LU X, LI B, YUE Y, et al. Grid R-CNN plus: Faster and better [J]. 2019, http://arxiv. org/abs/ 1906.05688.

- [91] TIAN Z, SHEN C, CHEN H, et al. FCOS: Fully convolutional one-stage object detection [C]. International Conference on Computer Vision, 2019: 9626-9635.
- [92] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2020: 9756-9765.
- [93] PANG J, CHEN K, SHI J, et al. Libra R-CNN: Towards balanced learning for object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2019: 821-830.
- [94] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
- [95] LI Z, ZHOU F. FSSD: Feature fusion single shot multibox detector [J]. ArXiv Preprint, 2017, Arxiv: 1712.00960.
- [96] FU C Y, LIU W, RANGA A, et al. Dssd: Deconvolutional single shot detector[J]. ArXiv Preprint, 2017, ArXiv:1701.06659, .
- [97] XU M, CUI L, LV P, et al. MDSSD: Multi-scale deconvolutional single shot detector for small objects[J], Science China Information Sciences, 2020, 63 (2): 120113.
- [98] ZHAO Q, SHENG T, WANG Y, et al. M2Det: A single-shot object detector based on multi-level feature pyramid network[C]. The Association for the Advance of Artificial Intelligence (AAAI), 2019: 9259-9266.
- [99] DAI J, QI H, XIAONG Y, et al. Deformable convolutional networks [C]. International Conference on Computer Vision (ICCV), 2017: 764-773.
- [100] LI Z, CHEN Y, GENG Y. R-FCN + +: Towards accurate region-based fully convolutional networks for object detection [C]. The Association for the Advance of Artificial Intelligence (AAAI), 2018: 7073 7080.
- [101] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision (ICCV), 2017: 2980-2988.
- [102] LU X, LI B, YUE Y, et al. Grid R-CNN[C]. IEEE/ CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 7355-7364.
- [103] SINGH B, DAVIS L S. An analysis of scale invariance in object detection SNIP [C]. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018: 3578-3587.

- [104] CHEN Y, LI J, XIAO H, et al. Dual path networks[C]. Neural Information Processing Systems, 2017: 4467-4475.
- [105] SINGH B, NAJIBI M, DAVIS L S. SNIPER: Efficient multi-scale training[C]. Neural Information Processing Systems, 2018: 9333-9343.
- [106] TONG K, WU Y, ZHOU F. Recent advances in small object detection based on deep learning: A review[J]. Image and Vision Computing, 2020, 97: 103910.
- [107] 梁新宇. 基于深度学习的图像语义分割技术研究进展[J]. 计算机工程与应用, 2020 (2): 18-28.
 LIANG X Y. Research progress of image semantic segmentation based on deep learning [J]. Computer Engineering and Applications, 2020(2): 18-28.
- BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 2874-2883.
- [109] KONG T, YAO A, CHEN Y, et al. Hypernet: Towards accurate region proposal generation and joint object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 845-853.
- [110] KIM Y, KANG B N, KIM D. SAN: Learning relationship between convolutional features for multiscale object detection [C]. European Conference on Computer Vision (ECCV), 2018: 328-343.
- [111] GIDARIS S, KOMODAKIS N. Object detection via a multi-region & semantic segmentation-aware CNN model[C]. International Conference on Computer Vision (ICCV), 2015: 1134-1142.
- [112] LI J, LIANG X L, DONG J D, et al. Attentive contexts for object detection [J]. IEEE Transactions on Multimedia, 2017, 19(5): 944-954.
- [113] ZHU Y, ZHAO C, WANG J, et al. CoupleNet: Coupling global structure with local parts for object detection [C]. International Conference on Computer

Vision (ICCV), 2017: 4146-4154.

[114] 聂藤. 一种基于子空间分解和判别分析的多标签分 类算法[D]. 武汉: 华中科技大学, 2016.
NIE T. A multi-label classification algorithm based on subspace decomposition and discriminant analysis[D].
Wuhan: Huazhong University of Science and Technology, 2016.

作者简介

吴一全,1998年于南京航空航天大学获 得博士学位,现为南京航空航天大学教授、 博士生导师,主要研究方向为遥感图像处理 与理解、红外目标检测与识别、视觉检测与 图像测量、视频处理与智能分析等。

E-mail:nuaaimage@163.com

Wu Yiquan received Ph. D. degree from Nanjing University of Aeronautics and Astronautics in 1998. He is a professor and a Ph. D. advisor at Nanjing University of Aeronautics and Astronautics. His main research interests include remote sensing image processing and understanding, infrared target detection and recognition, visual detection and image measurement, video processing and intelligent analysis, et al.

赵朗月(通信作者),2015年于陕西理 工大学获得学士学位,2018年于西安工程大 学获得硕士学位,现为南京航空航天大学电 子信息工程学院信号与信息处理专业博士 研究生,主要研究方向为图像处理与机器

视觉。

E-mail: zlangyue@ nuaa. edu. cn

Zhao Langyue (Corresponding author) received B. Sc. degree from Shaanxi University of Technology in 2015 and received her M. Sc. degree from Xi'an Polytechnic University in 2018. She is currently pursuing her Ph. D. degree in Department of Signal and Information Processing, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics. Her current research interest includes image processing and machine vision.