基于多模成像融合的弓网电弧检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.山区土木工程安全与韧性全国重点实验室南昌330013; 2.华东交通大学电气与自动化工程学院 南昌330013; 3.北京交通大学物理科学与工程学院北京100044

作者简介:

通讯作者:

中图分类号:

TH701TP391.4

基金项目:

国家自然科学基金(52567009)、江西省赣鄱俊才计划(20243BCE51071)、轨道交通基础设施性能监测与保障国家重点实验室开放课题(HJGZ2023111)项目资助


Research on pantograph-catenary arc detection via multimodal imaging fusion
Author:
Affiliation:

1.State Key Laboratory of Safety and Resilience of Civil Engineering in Mountain Area, Nanchang 330013, China; 2.School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; 3.School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing 100044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    弓网电弧故障是制约高速铁路与城市轨道交通安全稳定运行的重要隐患之一,其产生的强光、高温及电磁干扰会加剧接触网部件磨损,缩短运用寿命,并可能诱发供电系统故障,造成重大安全事故。传统基于可见光的弓网电弧识别易受光照变化、遮挡及天气条件等环境因素干扰,导致检测精度与鲁棒性不足,难以满足复杂场景下在线监测需求。为提升检测性能,提出了一种融合可见光、红外、声信号的多模成像弓网电弧检测方法。首先,利用麦克风阵列采集的弓网电弧声信号并构建时频矩阵;随后,引入基于变分推断的噪声抑制策略,抑制环境背景噪声并保留电弧声信息;在此基础上,采用时域波束形成实现声源成像与能量聚焦,得到声学成像图。进一步,将声学图像与可见光、热成像数据进行配准与空间对齐,获得电弧形态的多模态图像表达,并将配准后的图像输入多模态目标检测模型,最终获得弓网电弧位置与置信度信息,完成电弧故障的检测与定位。为论证关键环节的有效性,搭建声学传播模型和实验平台,系统分析电弧声源传播规律并验证噪声抑制策略对信噪比与成像性能的提升作用。实验结果表明,所提多模成像融合方法,相较单一可见光模态与可见光/红外双模态方案,识别精度分别提升15.9%与8.1%,能够在多工况干扰环境下保持稳定检测性能,为弓网电弧的在线监测提供技术支撑。

    Abstract:

    Pantograph-catenary arc faults pose a serious threat to the safe and stable operation of high-speed railway and urban rail transit systems. The intense light, high temperature, and electromagnetic interference generated by these arcs accelerate the wear of catenary components, shorten their service life, and may even trigger power supply system failures, leading to serious safety incidents. Traditional visible-light-based pantograph-catenary arc detection methods are susceptible to environmental interferences such as illumination variations, occlusions, and adverse weather conditions, leading to reduced detection accuracy and robustness and thereby limiting their applicability in complex online monitoring scenarios. This paper proposes a multimodal imaging-based arc detection method that integrates visible, infrared, and acoustic signals to enhance performance in complex scenes. Initially, the acoustic signals of arc are collected by a microphone array and transformed into time-frequency matrices. Subsequently, a variational inference-based noise suppression strategy is introduced to attenuate environmental background noise while preserving arc-related acoustic information. Building on this, time-domain beamforming is employed to achieve acoustic source imaging and energy focusing, yielding acoustic intensity maps. The acoustic images are then registered and spatially aligned with visible and thermal imagery to obtain a multimodal representation of arc morphology. The registered images are then fed into a multimodal object detection model to produce arc locations and confidence scores, thereby completing the detection and localization of the arc fault. To evaluate the proposed method, an acoustic propagation model and an experimental platform have been established to analyze the propagation characteristics of arc sources and systematically verify the impact of the noise-suppression strategy on signal-to-noise ratio and imaging performance. The experimental findings demonstrate that, in comparison with single visible-light modality and visible/infrared bimodal schemes, the proposed multimodal imaging fusion method enhances recognition accuracy by 15.9% and 8.1%, respectively, thus providing an effective solution for robust online detection of pantograph-catenary arcs.

    参考文献
    相似文献
    引证文献
引用本文

蔡智超,王健芬,程宏波,韦宝泉,孙洪宇.基于多模成像融合的弓网电弧检测方法研究[J].仪器仪表学报,2025,46(11):124-135

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码