面向数据不均衡下机械智能故障诊断的改进循环一致生成对抗网络
DOI:
CSTR:
作者:
作者单位:

1.苏州科技大学机械工程学院苏州215009; 2.苏州大学轨道交通学院苏州215131

作者简介:

通讯作者:

中图分类号:

TH165+.3TH133.33

基金项目:

国家自然科学基金(52405124, 52575131)、中国博士后科学基金(2025M771322)项目资助


Improved cycle-consistent generative adversarial network for mechanical intelligent fault diagnosis under data imbalance condition
Author:
Affiliation:

1.School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; 2.School of Rail Transportation, Soochow University, Suzhou 215131, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机械设备在复杂工况下长期运行时极易发生故障,如果不能及时准确诊断,不仅会造成性能下降和经济损失,还可能引发严重的安全事故,因此研究高效可靠的智能故障诊断方法具有重要工程价值。然而,在实际工业场景中,监测数据中故障样本数量有限,导致存在数据不均衡问题,严重制约了传统诊断模型的准确性与鲁棒性。为有效缓解上述问题,引入谱图卷积和混合注意力模块,提出了改进循环一致生成对抗网络,用于生成高质量的故障数据样本,从而提高数据不平衡下的机械故障智能诊断精度。具体地,谱图卷积通过稀疏邻接矩阵建模全局像素依赖关系,提升远程特征交互能力并降低计算复杂度;同时,混合注意力模块在通道和空间两个层面动态设置权重,突出关键区域并强化特征表达。利用提出的改进循环一致生成对抗网络,可以生成更加真实和多样的故障样本,有效扩充少数类样本,缓解数据不均衡对机械智能故障诊断性能的限制。在北京交通大学地铁列车转向架数据集和苏州大学轴承数据集上的实验结果表明,所提方法在3个图像质量评估指标和故障分类准确率方面均显著优于对比方法,验证了其在数据不均衡下的智能故障诊断性能,为工业应用中解决数据不均衡难题提供了一种切实可行的解决方案。

    Abstract:

    Mechanical equipment operating under complex working conditions is highly prone to failure. If such failures are not diagnosed in a timely and accurate manner, they may lead not only to performance degradation and economic losses but also to serious safety accidents. Therefore, developing efficient and reliable intelligent fault diagnosis methods is of significant engineering importance. However, in real industrial scenarios, the number of fault samples in monitoring data is usually limited, resulting in data imbalance problems that severely constrain the accuracy and robustness of traditional diagnostic models. To effectively mitigate this issue, this paper introduces spectral graph convolution and a hybrid attention module, and proposes an improved cycle-consistent generative adversarial network for generating high-quality fault samples, thereby enhancing intelligent mechanical fault diagnosis under imbalanced data conditions. Specifically, spectral graph convolution models global pixel dependencies through sparse adjacency matrices, improving long-range feature interactions while reducing computational complexity. Meanwhile, the hybrid attention module dynamically assigns weights at both channel and spatial levels to highlight critical regions and strengthen feature representation. With the proposed improved cycle-consistent generative adversarial network, more realistic and diverse fault samples can be generated, effectively augmenting minority-class data and alleviating the limitations imposed by data imbalance on intelligent fault diagnosis performance. Experimental results on the Beijing Jiaotong University metro bogie dataset and the Soochow University bearing dataset show that the proposed method significantly outperforms comparison approaches in three image quality evaluation metrics and fault classification accuracy. These results validate its diagnostic effectiveness under imbalanced data conditions and demonstrate that it provides a practical and feasible solution for addressing data imbalance challenges in industrial applications.

    参考文献
    相似文献
    引证文献
引用本文

王报祥,丁传仓,居淼,皇甫一樊,黄伟国.面向数据不均衡下机械智能故障诊断的改进循环一致生成对抗网络[J].仪器仪表学报,2025,46(10):96-106

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码