基于随转视觉的直升机桨叶挥舞量测量及分析
DOI:
CSTR:
作者:
作者单位:

1.南昌航空大学图像处理与模式识别江西省重点实验室南昌330063; 2.北京航空航天大学仪器科学与光电工程学院北京100191

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(62473187)、国家自然科学基金(62365014)、江西省自然科学基金(20242BAB25120)项目资助


Measurement and analysis of helicopter rotor blade flapping based on rotating stereo vision
Author:
Affiliation:

1.Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China; 2.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精确测量直升机桨叶挥舞量并分析挥舞模式和规律,对旋翼气动性能评估和结构设计优化具有重要意义。为提高挥舞量视觉测量精度,并为全相位测量提供方案,设计了随转视觉测量系统,提出了相应的挥舞量测量方法,开展了挥舞模式与规律分析。首先,通过光电滑环实现了旋翼端向地面端的万兆级图像数据传输,设计了对称式相机安装支架保证相机与旋翼的整体动平衡,并在旋翼试验台完成不同转速、总距和周期变距下的全相位桨叶图像采集;其次,设计了小目标检测网络模型,克服了复杂光照干扰,实现了微小自发光标记点中心像素坐标的高精度定位,提高了标记点三维坐标的计算精度;再次,建立桨毂坐标系组,即在每个采集相位建立桨毂坐标系,将标记点三维坐标从相机坐标系转换到桨毂坐标系,解算各相位挥舞量,减轻了相机随旋翼旋转导致的坐标系漂移对测量精度的影响;最后,通过三阶多项式拟合分析同一相位挥舞空间模式,并利用复合正弦函数拟合分析旋转周期内的挥舞时域规律,为旋翼系统优化提供支撑。旋翼试验台测试结果表明,1.5 m×1.5 m视场范围内,挥舞量静态与动态测量误差分别为0.44和0.82 mm,挥舞模式和规律模型拟合度良好,均方根误差均<1 mm,验证了测量系统与方法的有效性及高精度特征,该系统已应用于旋翼设计试验验证。

    Abstract:

    Accurate measurement of helicopter rotor blade flapping, and analysis of its characteristic patterns are essential for evaluating rotor aerodynamic performance and optimizing structural design. To improve flapping visual measurement accuracy and enable full-phase measurement, this study develops a rotating stereo vision measurement system, proposes a corresponding flapping measurement method, and conducts analysis on blade flapping patterns and laws. First, via photoelectric slip rings, the 10-gigabit-level image data transmission from the rotor end to the ground end is realized. Meanwhile, a symmetric camera mounting bracket is designed to ensure the overall dynamic balance between the cameras and the rotor. Additionally, full-phase blade images are acquired on a rotor test rig under different rotational speeds, collective pitches, and cyclic pitches. Second, a small-target detection network is developed to handle complex illumination inference, enabling high-precision localization of the central pixel coordinates of tiny self-luminous marker points and improving the accuracy of their 3D coordinate computation. Third, a hub coordinate system is established for each acquisition phase. Marker 3D coordinates are transformed from camera to hub system to calculate phase-specific flapping, reducing errors from coordinate drift caused by camera-rotor rotation. Finally, third-order polynomial fitting analyzes in-phase flapping spatial patterns, while composite sine fitting analyzes flapping time-domain laws in the rotation cycle, supporting rotor system optimization. Experimental results on the rotor test rig demonstrate that, within a 1.5 m×1.5 m field of view, static and dynamic flapping measurement errors are 0.44 and 0.82 mm, respectively, both flapping patterns and laws models exhibit excellent agreement with experimental data (RMSE<1 mm). These results verify the effectiveness and high-precision characteristics of the proposed measurement system and method, and this system has been applied to the verification of rotor design tests.

    参考文献
    相似文献
    引证文献
引用本文

游滔,熊邦书,朱金浩,欧巧凤.基于随转视觉的直升机桨叶挥舞量测量及分析[J].仪器仪表学报,2025,46(11):229-240

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码