异质自适应ACO:角度惩罚与精英策略融合
DOI:
CSTR:
作者:
作者单位:

南京工程学院工程训练中心应用技术学院南京211167

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

南京工程学院校级科研基金项目(CKJA202206)、江苏省研究生科研与实践创新计划项目(SJCX24_1291,SJCX24_1297)、江苏省产学研合作项目(DH20251224)资助


Heterogeneous adaptive ACO: Integration of angle penalty and elite strategy
Author:
Affiliation:

Engineering Training Center & School of Applied Technology, Nanjing Institute of Technology, Nanjing 211167, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统蚁群算法(ACO)在路径规划中收敛速度慢、易陷入局部最优和路径拐点多等局限性,提出了一种改进的ACO算法。该算法融合了异质自适应机制、角度惩罚与精英策略,并系统验证其泛化性能。通过构建异质-同质双种群协同架构,将两类不同特征的蚂蚁种群结合,增强了算法在多种环境下的全局搜索能力,有效避免种群的过早收敛;引入方向感知的角度惩罚因子,通过在路径规划中加入角度惩罚,避免了不必要的路径拐点,优化了路径平滑性,并提升了算法对复杂地形的适应性;采用精英加权信息素更新策略,使得优秀解的影响力在信息素更新过程中得到更大的体现,加速了收敛过程并提高了稳定性。在多规模栅格地图的对比实验中,所提算法展现出了优异的泛化性能与鲁棒性:在50×50复杂环境下,相较于传统ACO算法,路径长度减少14.1%,拐点降低69.4%;相较于现有改进算法,路径长度缩短8.4%,拐点减少66.6%,迭代次数下降82.6%。自动导引车(AGV)实车实验进一步验证了算法在真实场景中的泛化能力,路径长度缩短11.1%,拐点减少78.2%。创新性地提出了种群异质自适应调度机制、方向感知的角度惩罚策略和精英信息素加权更新方法,显著提升了ACO算法的泛化性能,为移动机器人导航系统的实际应用提供了可靠的技术支撑。

    Abstract:

    This paper addresses the limitations of traditional ant colony optimization (ACO) in path planning, such as slow convergence, susceptibility to local optima, and numerous path inflection points, by proposing an improved ACO algorithm. This algorithm integrates a heterogeneous adaptive mechanism, angle penalty, and an elite strategy, and systematically verifies its generalization performance. By constructing a heterogeneous-homogeneous dual-population collaborative architecture, combining two ant populations with different characteristics, the algorithm′s global search capability in various environments is enhanced, effectively avoiding premature convergence. Introducing a direction-aware angle penalty factor avoids unnecessary path inflection points, optimizes path smoothness, and improves the algorithm′s adaptability to complex terrain by adding angle penalties to path planning. The elite-weighted pheromone update strategy allows the influence of excellent solutions to be more fully reflected in the pheromone update process, accelerating the convergence process and improving stability. In the comparative experiment of multi-scale grid maps, the algorithm proposed in this paper showed excellent generalization performance and robustness: in a complex 50×50 environment, compared with the traditional ACO algorithm, the path length was reduced by 14.1% and the inflection point was reduced by 69.4%; compared to existing improved algorithms, the path length was shortened by 8.4%, the inflection point was reduced by 66.6%, and the number of iterations was reduced by 82.6%. The real vehicle experiment of the automated guided vehicle (AGV) further verified the generalization ability of the algorithm in the real scene, the path length was shortened by 11.1%, and the inflection point was reduced by 78.2%. This study innovatively proposed a population heterogeneous adaptive scheduling mechanism, a direction-aware angle penalty strategy, and an elite pheromone weighted update method, which significantly improved the generalization performance of the ACO algorithm and provided reliable technical support for the practical application of mobile robot navigation systems.

    参考文献
    相似文献
    引证文献
引用本文

曾宪阳,梁远生,于浩,刘畅,杨红莉.异质自适应ACO:角度惩罚与精英策略融合[J].仪器仪表学报,2025,46(11):298-311

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码