仿壁虎跨尺度粘附结构状态感知方法研究
DOI:
CSTR:
作者:
作者单位:

1.西安理工大学教育部数控机床及机械制造装备集成重点实验室西安710048; 2.陕西科技大学电气与控制工程学院西安710021

作者简介:

通讯作者:

中图分类号:

TP242TH122

基金项目:

国家自然科学基金(62403295)、陕西省自然科学基础研究计划(2023-JC-YB-339)、教育部数控机床及机械制造装备集成重点实验室开放基金(SKJC-2022-03)项目资助


Adhesion state sensing method for a gecko-inspired multiscale gripper
Author:
Affiliation:

1.Key Lab. of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry, Xi′an University of Technology, Xi′an 710048, China; 2.School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi′an 710021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有仿壁虎粘附结构在实时状态感知与主动调控能力方面的不足,受壁虎脚趾皮瓣-刚毛多级结构粘附调控方法及感知机制启发,提出了一种具有感知能力的仿生跨尺度粘附结构。该结构由毫米尺度靴形弹性基体与微米尺度蘑菇状粘附阵列复合构成,通过剪切运动实现接触面积的可控调节,正向剪切增大接触面积实现强黏附,反向剪切则通过界面剥离实现易脱附。通过建立跨尺度结构的倾斜棱柱简化模型,理论分析了预压、剪切与剥离这3个阶段中靴形结构底面法向应力的演化规律,发现底面内侧边缘法向应力对预压力与剪切力载荷响应敏感,且其应力状态的突变可作为识别剥离阶段的有效特征。基于双线性牵引-分离理论,建立了跨尺度粘附结构有限元模型,仿真分析了完整粘附过程,验证了结构的可控粘附机制与底面应力演化的阶段特性。依据理论与仿真分析,在仿生跨尺度粘附结构背衬内侧区域集成了薄膜压力传感器,并对其粘附与感知性能进行了实验测试。实验表明,剪切运动能够显著提升跨尺度结构的粘附性能,当剪切位移达到1.4 mm时,粘附力达到最大值1.98 N。同时,感知信号与法向预压力及剪切位移存在明确的对应关系,可有效识别粘附、滑移与脱附状态。研制的对抓式仿生粘附手爪样机成功实现了对玻璃、硅片等多种光滑表面的稳定抓取、可控释放与状态感知,最大负载能力达1 kg,验证了其在机器人操作中的应用潜力。

    Abstract:

    To address the shortcomings of existing gecko-inspired adhesive structures in real-time state sensing and active control capabilities, this paper proposes a bio-inspired multiscale adhesive structure with sensing capability, based on by the adhesion regulation method and sensing mechanism of the gecko′s lamella-setae hierarchical structure. The structure consists of a millimeter-scale boot-shaped elastic substrate integrated with a micrometer-scale mushroom-shaped adhesive array. By utilizing shear motion to achieve controllable adjustment of the contact area, the structure uses forward shear to increase the contact area for strong adhesion, while reverse shear enables easy detachment through interface peeling. A simplified inclined prism model of the multiscale structure was established to theoretically analyze the evolution of normal stress at the bottom surface of the boot-shaped structure during the preloading, shearing, and peeling stages. It was found that the normal stress at the inner edge of the bottom surface is sensitive to preload and shear forces, and its abrupt change can serve as an effective feature for identifying the peeling stage. Based on the bilinear traction-separation theory, a finite element model of the multiscale adhesive structure was developed to simulate the complete adhesion process, validating the controllable adhesion mechanism and the phased characteristics of stress evolution at the bottom surface. Guided by theoretical and simulation analyses, a thin-film pressure sensor was integrated into the inner backing layer of the bio-inspired multiscale adhesive structure, and experimental tests were conducted on its adhesion and sensing performance. The results demonstrate that shear motion significantly enhances the adhesion performance of the multiscale structure, with the adhesion force reaching a maximum value of 1.98 N at a displacement of 1.4 mm. Moreover, the sensing signals exhibit a clear correlation with the normal preload and shear displacement, enabling effective identification of adhesion, slip, and detachment states. The developed opposing-grip bio-inspired adhesive gripper prototype has successfully achieved stable grasping, controllable release, and state sensing on various smooth surfaces, such as glass and silicon wafers, with a maximum load capacity of 1 kg, verifying its potential for robotic manipulation applications.

    参考文献
    相似文献
    引证文献
引用本文

刘彦伟,李博文,胡重阳,王浩,李淑娟.仿壁虎跨尺度粘附结构状态感知方法研究[J].仪器仪表学报,2025,46(10):318-330

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码