多传感器信息约束下基于因子图优化的无人车紧耦合SLAM方法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学自动化学院哈尔滨150080;2.山东百盟信息技术有限公司威海264200

作者简介:

通讯作者:

中图分类号:

TH85TH242

基金项目:

黑龙江省自然科学基金(YQ2024E047)、黑龙江省优秀青年教师基础研究支持计划(YQJH2024067)项目资助


Tightly-coupled SLAM method for unmanned ground vehicles based on factor graph optimization with multi-sensor information constraints
Author:
Affiliation:

1.School of Automation, Harbin University of Science and Technology, Harbin 150080, China; 2.Shandong Bim Information Technology Co., Ltd., Weihai 264200, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多传感器融合同时定位与建图(SLAM)能够解决单一传感器的局限性,但现有方案仍受单目尺度不确定、惯性测量单元(IMU)初始化精度低及局部地图精度不足等问题制约,故提出一种基于因子图优化的多源信息紧耦合的SLAM方法,涉及3D激光雷达(LiDAR)、IMU、相机这3种异构传感器。在初始化阶段,通过激光雷达点云估计图像特征点深度信息,采用邻域筛选并结合统计优化的方法剔除异常点,从而显著提升深度估值精度,融合视觉、激光雷达与IMU信息联合求解IMU偏置量和重力方向,降低建图的垂直漂移;在局部优化阶段,采用因子图优化动态维护滑窗内的关键帧和局部地图,视觉局部地图通过共视投影匹配方法优化关键帧间的约束关系,有效剔除冗余地图点并提升地图精度与鲁棒性;在全局优化阶段,通过回环检测算法在因子图中添加回环因子,并采用增量式优化的方案对全局因子图进行优化,保证实时性的同时有效抑制累积误差。所提方法在KITTI、M2UD极端天气及真实校园场景这3类数据集上进行验证,该方法在定位精度上显著优于主流对比算法。与精度较高的LIO-SAM相比,在KITTI标准序列中绝对轨迹误差平均降低53.1%,在M2UD雨雪场景下误差降低66%,在校园场景中误差降低20.3%。建图结果在俯视与侧视视角下均显示出更高的结构一致性和几何精度,充分证明了该方法在定位精度和地图一致性方面具有显著优势。

    Abstract:

    Multi-sensor simulataneous localization and mapping (SLAM) mitigates single-sensor limitations, yet current methods still face challenges such as monocular scale ambiguity, inaccurate intrtial measurement unit (IMU) initialization, and limited local mapping precision. This paper proposes a tightly-coupled, factor graph-based SLAM approach that fuses data from three heterogeneous sensors: a 3D light detection and ranging (LiDAR), an IMU, and a camera. For initialization, LiDAR data provides depth for visual features, and outliers are removed through neighborhood selection and statistical optimization to improve accuracy. Visual, LiDAR, and IMU data are then fused to jointly estimate IMU biases and gravity direction, reducing vertical map drift. For local optimization, factor graphs dynamically maintain keyframes and local maps within sliding windows. Visual constraints are refined through co-visibility projection matching, efficiently purging redundant map points while boosting accuracy and robustness. Global optimization incorporates loop-closure factors detected via specialized algorithms and applies incremental optimization to the factor graph, suppressing cumulative error without compromising real-time performance. The proposed method is evaluated on KITTI, M2UD extreme weather, and real-campus datasets. It reduces the absolute trajectory error by 53.1% on KITTI, 66% in M2UD rain/snow scenarios, and 20.3% in campus environments compared to LIO-SAM. The resulting maps exhibit higher structural consistency and geometric accuracy in both overhead and side views.

    参考文献
    相似文献
    引证文献
引用本文

班喜程,马继瑞,尤波,孙明晓,史涛.多传感器信息约束下基于因子图优化的无人车紧耦合SLAM方法[J].仪器仪表学报,2025,46(10):356-370

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码