融合多视角投影与时空拓扑的多无人机多目标跟踪方法
DOI:
CSTR:
作者:
作者单位:

国防科技大学智能科学学院长沙410072

作者简介:

通讯作者:

中图分类号:

TP391.4TH701

基金项目:


Multi-object tracking for multi-drone systems integrating multi-view projection and spatiotemporal topology
Author:
Affiliation:

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了增强无人机对运动目标的持续跟踪能力,弥补单架无人机在目标跟踪时的性能不足,从无人机自身特点出发,利用多无人机协同感知优势,提出了一种融合多视角投影与目标时空拓扑特征的多机多目标跟踪方法。首先,利用无人机与机载光电吊舱的位置姿态信息而不依赖于图像特征,通过融合无人机位姿态与目标高度的一致性约束,实现无人机多视角间的快速投影变换,进行多机动态互补视角下的目标初步关联;其次,利用不同无人机视角下目标之间的时空拓扑特征进行双向关联匹配,并使用空间线索与时间线索对初步关联结果进行细致优化,进一步提高跨视角目标关联精度,提升无人机在遮挡场景下的目标持续跟踪能力;同时,重点针对无人机在拉升、下降、盘旋以及快速运动等多种运动状态下的目标遮挡场景,构建了包含位姿数据的多机多目标跟踪数据集(DP-MDMT),并结合真实任务场景开展相关实验验证。实验结果表明,该方法在DP-MDMT数据集上的关联性能指标召回率(Recall)、精确率(Precision)、多设备目标关联得分(MDA)分别为 60.2%、85.6%和 47.1%,相较于主流的多机多目标跟踪算法MIA-Net结果分别提升了6.4%、13.1%和7.4%,跟踪性能指标多目标跟踪精度(MOTA)和身份F1分数(IDF1)分别为80.1%和85.1%,且算法平均运行效率为29.7 fps,满足多无人机对地目标跟踪的实时性需求。

    Abstract:

    To enhance the persistent tracking capability of drones for moving objects and overcome the limitations of single-drone systems, this paper proposes a multi-drone multi-object tracking method that leverages collaborative perception. The approach integrates multi-view projection and the spatiotemporal topology of objects. By utilizing the positional and attitude data of the drones and their onboard photoelectric pods—without relying on image features—rapid projection between views is achieved through a consistency constraint between drone pose and object height. This enables preliminary object association under dynamic, complementary perspectives from multiple drones. Furthermore, bidirectional association matching is performed using the spatiotemporal topological features of objects from different viewpoints. Spatial and temporal cues refine the initial associations, improving crossview object matching accuracy and enhancing tracking robustness in occluded scenarios. Focusing on occlusions during various drone maneuvers such as climbing, descending, circling, and rapid motion, a dedicated multi-drone multi-object tracking dataset (DP-MDMT) incorporating pose data was constructed. Experiments in real-task scenarios show that the proposed method achieves recall, precision, and multi-device association (MDA) score of 60.2%, 85.6%, and 47.1%, respectively, on the DP-MDMT dataset, representing improvements of 6.4%, 13.1%, and 7.4% over the MIA-Net algorithm. The tracking metrics, including the multiple object tracking accuracy (MOTA) and ID F1-score (IDF1) reach 80.1% and 85.1%, respectively, with an average processing efficiency of 29.7 fps, meeting the real-time requirements for multi-drone ground object tracking.

    参考文献
    相似文献
    引证文献
引用本文

党昭洋,孙晓永,郭润泽,周沛达,孙备.融合多视角投影与时空拓扑的多无人机多目标跟踪方法[J].仪器仪表学报,2025,46(11):215-228

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码