GPR初值引导自监督DIC的旋转结构位移场测量方法
DOI:
CSTR:
作者:
作者单位:

1.西安交通大学航天航空学院西安710049; 2.西安交通大学复杂服役环境重大装备结构强度 与寿命全国重点实验室西安710049

作者简介:

通讯作者:

中图分类号:

TH741

基金项目:

装备重大基础研究项目(514010106-302-1)资助


GPR-initialized self-supervised learning DIC for displacement field measurement of rotating structures
Author:
Affiliation:

1.School of Aerospace Engineering, Xi′an Jiaotong University, Xi′an 710049, China; 2.State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi′an Jiaotong University, Xi′an 710049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统数字图像相关(DIC)方法因依赖子集相关性计算,在旋转测试中存在去相关现象和参数敏感性高的问题,提出了一种融合高斯过程回归(GPR)引导自监督DIC的旋转位移场测量方法(GPR-SSL-DIC)。该方法构建基于Kolmogorov-Arnold网络的自监督学习框架,利用重建图像与参考图像的灰度差异及位移场平滑约束设计自监督损失函数,驱动位移场自适应优化,从而避免了传统DIC方法基于子集匹配范式的局限。为增强网络对大角度旋转的收敛能力,在结构目标区域检测具有旋转不变性的SURF特征点,并利用其位移信息构建稀疏观测样本;进一步结合GPR预测全局位移场作为初始解,以引导网络收敛至真实解空间。数值模拟试验表明,在全周刚体旋转及耦合大变形工况下,所提方法的平均端点误差不超过0.001 7 pixels;在叠加正弦位移的复杂场景中,其平均端点误差不超过0.007 4 pixels,较传统DIC方法减少93.5%,验证了该方法对不同旋转工况的自适应能力与高精度表现。旋转叶片位移测量试验显示,在帧间旋转角度为9°时,所提方法对叶片表面固定点距离测量的标准差较传统DIC方法减少54.3%,稳定性更优;在帧间旋转角度达30°时,传统DIC方法因去相关失效,而所提方法仍能稳定获取叶片位移分布。研究表明,所提方法具备处理大角度旋转场景的能力,为旋转结构位移场测量提供了有效手段。

    Abstract:

    Traditional digital image correlation (DIC) methods that rely subset-based correlation calculations are prone to decorrelation and strong parameter sensitivity under rotational motions. To overcome these limitations, this study proposes a Gaussian process regression-guided self-supervised learning DIC method (GPR-SSL-DIC) for accurate rotational displacement field measurement. The method develops a self-supervised learning framework based on the Kolmogorov-Arnold Network (KAN) network, in which a loss function is formulated using the grayscale differences between the reconstructed and reference images together with a displacement-field smoothness constraint, driving adaptive optimization of the displacement field and thereby overcoming the limitations of the conventional subset-matching paradigm in traditional DIC. To improve convergence under large-angle rotations, rotation-invariant SURF feature points are detected in the structural target region, and their displacement information is used to construct sparse observation samples. Furthermore, Gaussian process regression is employed to predict a global displacement field as an initial solution, thereby guiding the network to converge toward the true solution space. Numerical simulations show that the proposed method achieves average end-point errors below 0.001 7 pixels under rigid-body rotation and coupled large-deformation conditions, and below 0.007 4 pixels with sinusoidal displacements are superimposed, corresponding to a 93.5% improvement over traditional DIC. Rotating-blade dispacement experiments further demonstrate that at a 9° inter-frame rotation, the standard deviation of fixed-point distance measurements decreases by 54.3% compared with traditional DIC. At 30°, where traditional DIC fails due to severe decorrelation, the proposed method is still able to obtain the displacement distribution of the blade. These results confirm that the proposed framework is robust under large-angle rotational conditions and offers an effective solution for displacement field measurement in rotating structures.

    参考文献
    相似文献
    引证文献
引用本文

金旭,张一鸣,李广,徐自力. GPR初值引导自监督DIC的旋转结构位移场测量方法[J].仪器仪表学报,2025,46(11):193-204

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码