面向道路病害检测的步进频率雷达高分辨成像方法
DOI:
CSTR:
作者:
作者单位:

1.桂林电子科技大学信息与通信学院桂林541004; 2.南宁桂电电子科技研究院有限公司南宁530000

作者简介:

通讯作者:

中图分类号:

TH89TN957.51

基金项目:

南宁市科学研究与技术开发计划(20231011)、广西壮族自治区产业技术研究院产研计划(CYY-HT2023-JSJJ-0023)、桂林电子科技大学研究生教育创新计划(2025YCXS043)项目资助


High-resolution imaging method for step-frequency radar in road disease detection
Author:
Affiliation:

1.School of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin 541004, China; 2.Nanning Guidian Electronic Technology Institute Co., Ltd., Nanning 53000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    步进频率探地雷达作为道路结构层病害无损检测的关键技术,其成像分辨率直接影响了对病害检测识别的可靠性和精度。针对现有的步进频率探地雷达用于道路病害检测时成像分辨率低,而采用压缩感知方法又面临着正则化参数选择困难、依赖人工经验等问题,提出了一种基于交替方向乘子网络的一维高分辨成像方法。所提方法通过将交替方向乘子算法(ADMM)的迭代过程展开为具有物理意义的深度网络结构,构建了包含重构层、非线性变换层和乘子更新层的端到端学习框架。重构层负责实现信号的反向传播计算,非线性变换层通过软阈值函数施加稀疏约束,乘子更新层则完成拉格朗日乘子的迭代更新,3个层级的协同工作使得网络能够通过训练自适应地学习最优参数组合。在获得网络输出的最优反射系数序列后,将其与雷克子波进行褶积运算,最终生成高分辨一维像。为了验证方法的可行性,通过gprMax电磁传播仿真软件,采集了3种病害场景仿真数据,并且用团队自主开发的步进频率雷达样机采集实测数据。仿真与实测结果表明,所提方法在保持高分辨率的同时具有优异的抗噪声性能,与改进的正交匹配追踪算法(OMP)相比,精度提升约2%,分辨率提高近2倍;与ADMM算法相比,分辨率提升约1%,这充分说明了方法的可行性。

    Abstract:

    Stepped-frequency ground penetrating radar (GPR) serves as a key non-destructive testing technology for road structure defect detection, where imaging resolution directly affects the reliability and accuracy of defect detection and identification. To address the problems of low imaging resolution in existing stepped-frequency GPR systems for road defect detection, as well as the difficulties in regularization parameter selection and heavy reliance on manual experience when applying compressive sensing methods, a one-dimensional high-resolution imaging method based on the alternating direction method of multipliers (ADMM) network is proposed. The proposed method unrolls the iterative process of the ADMM algorithm into a physically interpretable deep network structure, constructing an end-to-end learning framework consisting of a reconstruction layer, a nonlinear transformation layer, and a multiplier update layer. The reconstruction layer performs backpropagation calculation of signals, the nonlinear transformation layer imposes sparse constraints via a soft-thresholding function, and the multiplier update layer completes the iterative update of Lagrange multipliers. The collaborative work of these three layers enables the network to adaptively learn the optimal parameter combination through training. After obtaining the optimal sequence of reflection coefficients output by the network, it is convolved with a Ricker wavelet to finally generate a high-resolution one-dimensional image. To validate the feasibility of the method, simulation data for three scenarios were collected using gprMax electromagnetic wave propagation simulation software and measured data were collected using the team′s self-developed radar prototype. Simulation and experimental results demonstrate that the proposed method achieves excellent noise immunity while maintaining high resolution. Compared with the improved orthogonal matching pursuit (OMP) algorithm, it improves accuracy by 2% and enhances resolution by approximately two times. When compared to the standard ADMM algorithm, it achieves about a 1% improvement in resolution. These results fully validate the feasibility of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

晋良念,罗盛耀,熊思宇.面向道路病害检测的步进频率雷达高分辨成像方法[J].仪器仪表学报,2025,46(10):384-395

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码