曲面型双交流磁致伸缩SH导波换能器设计
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学机械工程学院武汉430068; 2.湖北汽车工业学院汽车智能制造学院十堰442002; 3.湖北工业大学 现代制造质量工程湖北省重点实验室武汉430068; 4.华中科技大学机械科学与工程学院武汉430074

作者简介:

通讯作者:

中图分类号:

TH165+.4TB553

基金项目:

国家重点研发计划(2022YFF0605600)、湖北省重点研发计划(2024BAB065)项目资助


Design of curved surface type dual AC magnetostrictive SH guided wave transducer
Author:
Affiliation:

1.School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; 2.School of Automotive Intelligent Manufacturing, Hubei University of Automotive Technology, Shiyan 442002, China; 3.Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Hubei University of Technology, Wuhan 430068, China; 4.School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统电磁超声一般采用永磁体或者直流电(包括单向脉冲电流和单向正弦电流)提供偏置磁场,永磁体换能器属于刚性检测,在曲面对象原位检测中受限,直流偏置磁场一般数值较大实验条件苛刻。为此,提出了一种曲面双交流磁致伸缩换能器,采用交流电提供偏置磁场,建立双交流磁致伸缩激励超声波模型。有限元分析显示,换能器可以激励单一模态SH导波,且与缺陷作用后未发生模态转化;随着曲率半径的改变,曲面换能器激励磁场标准差更小,信号幅值波动更小,以磁场强度最大值的95%为基准衡量其磁场均匀性,曲面型换能器均匀区域长为22~24.34 mm,而平面型电磁声换能器(EMAT)的均匀区域在17.32~20.29 mm;此外,正交实验结果显示,换能器结构参数对幅值影响程度为:层数>匝数>长度>线径>高度。搭建双交流磁致伸缩水平剪切(SH)导波系统,在磁化电流为12.3 A磁化线圈匝数为40时,曲面型换能器缺陷信号幅值比平面型换能器提高18.64%,磁化电流增加至30 A时幅值提高35.71%,磁化线圈匝数增加至100 匝时幅值提高85.59%。不同曲率半径重复实验显示,随着曲率半径的增加两类换能器幅值均逐渐增加,曲面型换能器幅值整体误差更小,波动更小,相同曲率半径检测对象,曲面型换能器幅值更大。验证了双交流磁致伸缩激励SH导波的可行性和曲面对象缺陷检测的有效性。

    Abstract:

    Conventional electromagnetic acoustic transducers (EMATs) typically empoy either permanent magnets (PMs) or direct current (DC) including unidirectional pulse currents and unidirectional sinusoidal currents, to provide the required bias magnetic field. However, PMbased transducers are inherently rigid, which limits their applicability for in-situ inspection of curved structures, while DC bias fields generally require large current magnitudes and impose stringent experimental conditions. To address these limitations, a curved dual-AC magnetostrictive transducer is proposed, which generates the bias magnetic field using alternating current. A theoretical model for ultrasonic excitation based on the dual-AC magnetostrictive mechanism is established. Finite element analysis demonstrates that the proposed transducer can excite a pure shear horizontal (SH) guided wave mode without modal conversion after interacting with defects. As the curvature radius increases, the curved transducer exhibits a smaller standard deviation of the excitation magnetic field and lower signal amplitude fluctuation. Using 95% of the peak magnetic field intensity as the criterion for field uniformity, the uniform magnetic field region of the curved transducer ranges from 22 to 24.34 mm, compared with 17.32 to 20.29 mm for the planar electromagnetic acoustic transducer (EMAT). Furthermore, orthogonal experimental results indicate that the influence of structural parameters on signal amplitude follows the order: number of layers > number of turns > length > wire diameter > height. A dual-AC magnetostrictive SH guided wave system is subsequently constructed. Experimental results indicate that when the magnetization current is 12.3 A with 40 coil turns, the defect signal amplitude of the curved transducer is enhanced by 18.64% compared to that of the planar transducer. Increasing the magnetization current to 30 A yields an amplitude increase of 35.71%, and further increasing the number of turns in the magnetization coil to 100 results in an amplitude enhancement of 85.59%. Repeated experiments with different curvature radii show that the signal amplitude of both transducers increased with curvature radius, while the curved transducer exhibited smaller overall errors and amplitude fluctuations. These results confirm the feasibility of dual-AC magnetostrictive excitation for SH guided waves and demonstrate the effectiveness of the proposed curved transducer for defect detection on curved surfaces.

    参考文献
    相似文献
    引证文献
引用本文

周红军,涂君,宋旖旎,宋小春.曲面型双交流磁致伸缩SH导波换能器设计[J].仪器仪表学报,2025,46(10):256-266

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码