基于特征融合的全偏振超分辨率成像方法
DOI:
CSTR:
作者:
作者单位:

1.长春理工大学光电工程学院长春130022; 2.江淮前沿技术协同创新中心合肥230000

作者简介:

通讯作者:

中图分类号:

TP391TH701

基金项目:

江淮前沿技术协同创新中心追梦基金课题(2023-ZM01K004)项目资助


Full polarization super-resolution imaging method based on feature fusion
Author:
Affiliation:

1.College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2.Jianghuai Advance Technology Center, Hefei 230000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统分焦面偏振相机存在空间分辨率低且无法获取完整偏振信息的固有局限性,提出并构建了一套软硬件协同的全偏振超分辨率成像系统。硬件方面,研制了一款双通道共口径全偏振相机,能够在单次曝光中同步获取低分辨率的分焦面线偏振图像和高分辨率的圆偏振图像,相较于传统的全偏振成像系统,该设计显著简化了系统结构、降低了成本与装调难度。针对该相机独特的高低分辨率混合数据结构,设计了与之配套的基于特征融合的全偏振超分辨率网络模型。该模型采用双支路架构,同时输入相机采集的两幅图像并进行特征提取,将高分辨率圆偏振图像作为精确的引导信息,通过特征融合模块实现高低分辨率特征的有效互补。为确保双支路特征对齐,在进行超分辨率重建前对两探测器采集图像进行像素级配准,确保空间位移误差<1 pixel。引入包含物理约束的损失函数,确保了偏振角和椭圆率等角度参数重建的物理准确性,最终实现了对光强、偏振度、偏振角和椭圆率等全偏振特征的高质量重建。在真实场景数据集上,重建的4种偏振特征图像的峰值信噪比分别提升0.106、0.302、0.117和1.085 dB;结构相似度分别提升0.002、0.008、0.006和0.014。在外场探测实验中,该系统能够在复杂背景中凸显无人机目标,验证了其在目标探测领域的显著优势。

    Abstract:

    To address the inherent limitations of traditional division-of-focal-plane polarimeters, namely low spatial resolution and an inability to acquire complete polarization information, this paper presents a hardware-software co-designed full polarization super-resolution imaging system. On the hardware side, a dual-channel, common-aperture full polarization imaging system was developed to simultaneously capture a low-resolution division-of-focal-plane linear polarization image and a high-resolution circular polarization image in a single exposure. Compared to conventional full polarization imaging systems, this design simplifies the system architecture, reduces costs, and eases assembly and alignment. To process the unique mixed-resolution data from this camera, a complementary feature-fusion-based full polarization super-resolution network was designed. This model employs a dual-branch architecture that simultaneously processes the two captured images for feature extraction. The high-resolution circular polarization image serves as precise guidance, and a feature fusion module enables effective integration of the low-and high-resolution features. To ensure feature alignment between the two branches, pixel-level registration is performed on the images from both detectors before super-resolution reconstruction, guaranteeing a spatial displacement error of less than one pixel. A loss function incorporating physical constraints is introduced to ensure the physical accuracy of reconstructed angular parameters, such as the angle of polarization and ellipticity of polarization. This process achieves high-quality reconstruction of full polarization parameters, including intensity, degree of polarization, angle of polarization, and ellipticity of polarization. On a real-world dataset, the peak signal-to-noise ratios of the four reconstructed polarization feature images improved by 0.106 dB, 0.302 dB, 0.117 dB, and 1.085 dB, respectively, while the structural similarity index measure improved by 0.002, 0.008, 0.006, and 0.014. In the field exploration experiments, this system effectively identified the unmanned aerial vehicle targets in complex scenes, verifying its significant advantages in target detection.

    参考文献
    相似文献
    引证文献
引用本文

胡莫同,潘越,刘婧怡,张恺霖,孙赛赛.基于特征融合的全偏振超分辨率成像方法[J].仪器仪表学报,2025,46(10):371-383

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码