融合AGC补偿与多尺度异常值处理的WiFi信道状态信息室内无人机定位方法研究
DOI:
CSTR:
作者:
作者单位:

福州大学电气工程与自动化学院福州350108

作者简介:

通讯作者:

中图分类号:

TN98TH89

基金项目:

福建省高校产学合作项目 (2022H6020)资助


WiFi CSI-based indoor UAV localization method integrating AGC compensation and multi-scale outlier processing
Author:
Affiliation:

College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着无线通信技术的发展,WiFi信道状态信息(CSI)因其高时间分辨率和丰富的环境特征信息,成为无人机室内定位的有力工具。然而,CSI信号在采集过程中易受自动增益控制(AGC)电路引起的幅值失真,以及复杂室内环境中多径效应与动态噪声干扰的影响,这些因素严重定位精度。为解决上述问题,提出了一种融合AGC补偿与多尺度异常值处理的CSI室内无人机定位方法。首先,利用被动式CSI嗅探与Aruco视觉标识,实现自动化的数据采集与标注,在无人机正常通信过程中非侵入式地获取CSI数据,为后续算法训练提供了高质量数据。在此基础上,引入基于实时硬件增益反馈的动态AGC补偿算法,有效修正幅值失真,恢复信号的真实幅度。进一步结合Hampel滤波与基于密度的含噪声应用空间聚类(DBSCAN)的多尺度异常值处理,分别针对孤立的脉冲噪声和密集的噪声团簇进行识别与滤除,增强了信号特征在复杂环境下的稳健性与可靠性。此外,构建轻量级的基于ResNet架构的一维卷积神经网络(ResNet-1DCNN)模型,从优化后的CSI幅值序列中提取深层特征,实现高效的位置分类。各项评估指标表明,所提的AGC补偿与异常值处理策略能有效改善CSI信号质量,使定位模型能够学习到鲁棒的位置特征。所提的CSI室内无人机定位方法在定位区域上达到了98%的整体定位精度,相较于优化前性能提升了近29%。该方法为解决室内无人机精度定位问题提供了可行的方案,并验证了其在实时场景下的应用潜力。

    Abstract:

    WiFi channel state information (CSI) has emerged as a powerful tool for indoor drone localization, owing to its high temporal resolution and rich environmental features. However, the accuracy of CSI-based systems is significantly compromised by amplitude distortion induced by the receiver′s automatic gain control (AGC) circuit, coupled with multipath effects and dynamic noise interference in complex indoor environments. To address these challenges, this paper proposes a novel CSI-based indoor drone localization method that integrates AGC compensation with multi-scale outlier processing. The automated data collection and annotation system is established using passive CSI sniffing and Aruco visual markers, enabling non-intrusive acquisition of CSI data during the drone′s normal communication. The dynamic AGC compensation algorithm, leveraging real-time hardware gain feedback, is introduced to effectively correct the amplitude distortion and recover the true signal amplitude. Furthermore, the multi-scale outlier processing scheme combining Hampel filtering and density-based spatial clustering of applications with noise (DBSCAN) clustering is employed to respectively identify and filter out isolated pulse noise and dense noise clusters, thereby enhancing the robustness and reliability of signal features in complex settings. The lightweight residual network-one-dimensional convolutional neural network (ResNet-1DCNN) is subsequently constructed to extract deep features from the optimized CSI amplitude sequences for efficient location classification. Comprehensive evaluations demonstrate that the proposed AGC compensation and outlier processing strategies significantly improve CSI signal quality, enabling the model to learn more robust location-specific features. The proposed localization method achieved an overall accuracy of 98% in the test environment, representing a performance improvement of nearly 29% compared to the unoptimized baseline. This work provides a viable and effective solution for high-precision indoor drone localization and confirms its potential for real-time application.

    参考文献
    相似文献
    引证文献
引用本文

江灏,黄毅,陈静,阴存翊,郑绍聪.融合AGC补偿与多尺度异常值处理的WiFi信道状态信息室内无人机定位方法研究[J].仪器仪表学报,2025,46(11):114-123

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码