顾及几何特征可靠性的LiDAR点云配准优化算法
DOI:
CSTR:
作者:
作者单位:

1.东南大学仪器科学与工程学院南京210096; 2.南京邮电大学自动化学院南京210023

作者简介:

通讯作者:

中图分类号:

TP242.6TH76

基金项目:

江苏省科技重大专项(BG2024003)、国家电网有限公司科技项目(J2024159)资助


Optimization algorithm for LiDAR point cloud registration considering reliability of geometric features
Author:
Affiliation:

1.School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China; 2.School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    点云配准是激光雷达(LiDAR)定位的关键技术,为了解决传统点云配准的迭代最近点(ICP)算法在几何特征稀疏及退化场景中面临的挑战,故提出顾及几何特征可靠性的LiDAR点云配准优化方法,该方法包含两个模块:1)基于曲率的特征提取模块,通过构建局部邻域协方差矩阵并分解特征值,计算点云的最大主曲率与最小主曲率,同时引入主曲率差及法向量夹角构建曲率一致性误差函数,通过量化几何特征差异可有效过滤重复结构中易混淆的候选匹配点,解决噪声干扰下的匹配歧义问题,保障特征配准的几何一致性,为后续配准提供高质量特征对;2)基于特征可靠性的点云配准模块,利用特征拟合误差、局部曲率和谱熵这3个因子量化特征拟合质量,通过贝叶斯模型形成统一可靠性权重,基于此权重构建了加权点云配准优化框架,通过权重调节机制抑制低质量特征的干扰,从而降低其对配准结果引入的误差。在自建数据集和公开KITTI数据集上开展了实验验证,结果表明:所提方法在室内特征退化场景的三维定位误差较常规点-线(PL)/点-面(PP)ICP方法降低了47%,显著提升了挑战环境下的定位精度与鲁棒性,并通过消融实验进一步证实了多特征协同优化的重要性,算法在万级特征对规模下优化耗时控制在20 ms以内,满足实时性需求。

    Abstract:

    Point cloud registration is a key technology for light detection and ranging (LiDAR) positioning. To address the challenges of the traditional iterative closest point (ICP) algorithm in point cloud registration in scenarios with sparse geometric features and degenerated environments, this paper proposes an optimization method for LiDAR point cloud registration considering the reliability of geometric features. This method consists of two modules: 1) A curvature-based feature extraction module that constructs a local neighborhood covariance matrix and decomposes its eigenvalues to calculate the maximum and minimum principal curvatures of the point cloud, while introducing the principal curvature difference and normal vector angle to construct a curvature consistency error function. By quantifying geometric feature differences, it effectively filters out ambiguous candidate matching points in repetitive structures, resolves matching ambiguities under noise interference, ensures the geometric consistency of feature registration, and provides high-quality feature pairs for subsequent registration; 2) A feature reliability-based point cloud registration module that uses three factors—feature fitting error, local curvature, and spectral entropy—to quantify feature fitting quality, forms a unified reliability weight through a Bayesian model, and constructs a weighted point cloud registration optimization framework based on this weight. The weight adjustment mechanism suppresses the interference of low-quality features, thereby reducing the errors introduced into the registration results. Experimental validation on both self-built and public KITTI datasets shows that the proposed method reduces 3D positioning errors by 47% compared to conventional point-line (PL)/point-plane (PP) ICP methods in indoor degraded scenes, significantly improving positioning accuracy and robustness in challenging environments. Ablation experiments further confirm the importance of multi-feature collaborative optimization, and the algorithm maintains optimization times within 20 ms for ten thousand-level feature pairs, meeting real-time requirements.

    参考文献
    相似文献
    引证文献
引用本文

孙之寒,高旺,潘树国,王强.顾及几何特征可靠性的LiDAR点云配准优化算法[J].仪器仪表学报,2025,46(9):257-266

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码