基于机器视觉的飞机连接件识别与分类算法
DOI:
CSTR:
作者:
作者单位:

辽宁科技学院机械工程学院本溪117004

作者简介:

通讯作者:

中图分类号:

TH161TP391

基金项目:

辽宁省教育厅项目(JYTMS20231781)、广东省机器人与智能系统重点实验室开放基金项目(2924040132)资助


Machine vision-based algorithm for recognition and classification of aircraft connecting components
Author:
Affiliation:

College of Mechanical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    典型飞机连接件种类繁多且批量巨大。然而,不同尺寸、外观形状复杂各异,位姿摆放无序的飞机连接件识别与分类是实际应用亟待解决的难题。针对此类问题,提出了基于机器视觉的飞机连接件识别与分类算法。首先,利用高斯滤波消除图像噪声,采用双阈值二值法提取图像边缘过渡带;然后,建立图像坐标系,对飞机连接件图像边缘进行定位,将图像分割为4个象限,对每个象限中的连接件几何中心进行定位,并计算连接件边缘过渡带点的关键参数;最后,通过容差视觉识别算法、划分封闭连接件测量关注区域、支持向量机预设值算法和基于第二关注区角点识别算法,对连接件进行识别与分类。在机器视觉图像处理实验平台上,将垫片、螺纹、卡簧和螺母这4种不同类型的飞机连接件作为实验对象,对飞机连接件进行检测与识别精度验证。在此基础上,展示了该算法的求解过程。实验结果表明,该研究平均检测每幅图片时间为2.14 s,平均分类识别正确率为 95.02%,单个零件识别时间为0.54 s,错误识别率仅为4.98%;SIFT和Hu算法检测平均分类识别正确率为 90.29%和72.42%,单个零件识别时间为1.16和1.34 s;2种检测方法识别时间相差0.62和0.80 s,识别正确率相差4.8%和22.65%,其视觉识别方法可以满足飞机连接件的快速、准确识别要求。

    Abstract:

    Typical aircraft fasteners are characterised by their extensive variety and substantial production volumes. However, the recognition of these components—which vary in size, exhibit complex geometries, and often appear in disordered orientations—remains a pressing challenge in practical applications. To address this issue, a machine vision-based aircraft connector recognition and classification algorithm is proposed. Firstly, Gaussian filtering is employed to eliminate image noise, followed by a dual-threshold binarisation method to extract edge transition zones. Subsequently, an image coordinate system is established to locate connector edges, partitioning the image into four quadrants. The geometric centres of connectors within each quadrant are then positioned, and key parameters of edge transition zone points are calculated. Finally, the components are identified and classified through a tolerance-based visual recognition algorithm, delineation of enclosed measurement regions for the fasteners, a support vector machine preset value algorithm, and a corner point recognition algorithm based on secondary regions of interest. On a machine vision image processing experimental platform, four distinct types of aircraft fasteners—gaskets, threads, retaining rings, and nuts—were employed as test subjects to validate the detection and recognition accuracy. Building upon this, the algorithm′s solution process is demonstrated. Experimental results indicate that the average detection time per image is 2.14 seconds, with an average classification accuracy of 95.02%. Individual part recognition takes 0.54 seconds, with an error rate of only 4.98%. The SIFT and Hu algorithms achieved average classification accuracy rates of 90.29% and 72.42%, respectively, with individual part recognition times of 1.16 seconds and 1.34 seconds. The recognition time differences between the two detection methods were 0.62 seconds and 0.80 seconds, while the accuracy differences were 4.8% and 22.65%. These results demonstrate that the proposed method meets the requirements for rapid and accurate recognition of aircraft fasteners.

    参考文献
    相似文献
    引证文献
引用本文

支珊,张宇航,廖宇杰,孙玲,杨振远.基于机器视觉的飞机连接件识别与分类算法[J].仪器仪表学报,2025,46(9):102-109

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码