基于ICGO-RELM的测斜仪磁干扰误差补偿方法
DOI:
CSTR:
作者:
作者单位:

长江大学地球物理与石油资源学院武汉430100

作者简介:

通讯作者:

中图分类号:

TH763

基金项目:


Compensation of magnetic interference error of inclinometer based on ICGO-RELM
Author:
Affiliation:

College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    井下测斜仪在地磁场测量过程中易受钻具磁化、井壁环境及外部电磁噪声等多种因素的干扰,从而导致钻具方位角解算产生显著误差。现有的多测点分析法能够对磁干扰进行一定程度的补偿,但补偿后的方位角仍存在明显的非线性特征,难以满足高精度井下测量需求。故提出一种基于改进混沌博弈优化(ICGO)的正则化极限学习机(RELM)误差补偿方法。首先,利用多测点分析法完成磁干扰的初步校正;随后构建了以三轴加速度计与磁力计数据为输入、校正残差为输出的CGO-RELM补偿模型,并与基于粒子群优化(PSO)和遗传算法(GA)的RELM模型进行对比。针对原始CGO算法中种群多样性不足、陷入局部极值的问题,进一步引入混沌、高斯、小波这3种随机种子变异方式,并提出三阶段融合策略以提升全局搜索能力和收敛效率。实验表明,所提出的ICGO-RELM方法在拟合性能与泛化精度上均显著优于对比算法。与传统RELM模型相比,方位角的平均绝对误差(MAE)和均方根误差(RMSE)分别降低94.1%和93.1%,决定系数提升至0.999 4。结果验证该方法对非线性误差具有显著抑制效果,从而提高井下方位角解算精度,为复杂井下环境下的轨迹控制与随钻测量提供了一种可靠的技术途径。

    Abstract:

    Downhole inclinometers are susceptible to interference from various factors during geomagnetic field measurements, including drill tool magnetization, the borehole environment, and external electromagnetic noise. This can lead to significant errors in the drill tool azimuth angle calculation. Existing multi-point analysis methods can compensate for magnetic interference to a certain extent. However, the compensated azimuth angle still exhibits significant nonlinear characteristics, making it difficult to meet the requirements of high-precision downhole measurements. Therefore, this article proposes a regularized extreme learning machine (RELM) error compensation method based on improved chaotic game optimization (ICGO). First, a multi-station analysis method is used to perform preliminary correction for magnetic interference. Subsequently, a CGO-RELM compensation model is formulated, which uses triaxial accelerometer and magnetometer data as input and outputs correction residuals. The model is compared with RELM models based on particle swarm optimization (PSO) and genetic algorithms (GA). To address the problems of insufficient population diversity and local extrema in the original CGO algorithm, three random seed mutation methods, including chaos, Gaussian, and wavelet, are introduced. A three-stage fusion strategy is proposed to improve global search capability and convergence efficiency. Experiments show that the proposed ICGO-RELM method significantly outperforms competing algorithms in both fitting performance and generalization accuracy. Compared with the traditional RELM model, the mean absolute error (MAE) and root mean square error (RMSE) of azimuth angles are reduced by 94.1% and 93.1%, respectively, and the coefficient of determination is increased to 0.999 4. These results demonstrate that this method significantly suppresses nonlinear errors, improving downhole azimuth angle solution accuracy and providing a reliable technical approach for trajectory control and measurement while drilling in complex downhole environments.

    参考文献
    相似文献
    引证文献
引用本文

梁家豪,程为彬,胡少兵,王弋文,张夷非.基于ICGO-RELM的测斜仪磁干扰误差补偿方法[J].仪器仪表学报,2025,46(9):212-222

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码