基于双目内窥镜的发动机叶片缺陷重建方法研究
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学光电信息与仪器北京市工程研究中心北京100192; 2.中国空间技术研究院遥感卫星总体部北京100086

作者简介:

通讯作者:

中图分类号:

TH74TP391.41

基金项目:

国家重点研发计划青年科学家项目(2023YFB3905200)资助


Research on the reconstruction method of engine blade defects based on binocular endoscopy
Author:
Affiliation:

1.Beijing Engineering Research Center for Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, China; 2.Remote Sensing Satellite Department of China Academy of Space Technology, Beijing 100086, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决航空发动机叶片在役检测中高反射表面的微小缺陷难以高精度重建的问题,故提出一种基于双目内窥镜的叶片缺陷三维重建方法。针对内窥场景下传统标定精度不足的局限,设计了同心双圆环标定板,建立了基于共心约束的特征点提取与优化算法,实现了双目系统的高精度标定。实验结果表明,该方法的单目标定平均重投影误差分别为0.095和0.103 pixels,双目标定误差显著降低,提升了系统几何参数精度。立体重建方面,结合深度学习检测模型YOLO11实现缺陷区域自动定位,获取左右视图特征检测框的先验信息,提出基于检测框的区域约束与先验视差筛选策略,通过确定搜索行区域交集与视差范围,将匹配计算限制在缺陷区域内,避免检测框外错误匹配的代价平滑传播,提高了立体匹配稳定性与局部重建精度,并对AD-Census立体匹配算法进行适应性改造,进一步降低噪声。重建所得划痕和凹坑点云密度相对均匀,测量结果显示,凹坑直径和划痕长度的相对误差分别<1%,深度测量误差不超过8%,满足工程应用要求。该方法在复杂光照与空间受限环境下表现出良好的鲁棒性与精度优势,在标定精度、局部重建质量和测量可靠性方面均显著优于传统方法,为航空发动机叶片在役高精度三维形貌测量提供了有效的技术支撑。

    Abstract:

    To address the challenge of accurately reconstructing micro-defects on highly reflective surfaces during in-service inspection of aero-engine blades, a three-dimensional (3D) reconstruction method based on a binocular endoscopic system is proposed. To overcome the limitations of insufficient calibration accuracy in endoscopic scenarios, a concentric dual-ring calibration target is designed, and a feature point extraction and optimization algorithm based on concentricity constraints is developed to achieve high-precision binocular calibration. Experimental results demonstrate that the proposed method achieves average single-camera reprojection errors of 0.095 and 0.103 pixels, respectively, while significantly reducing binocular calibration error and improving the accuracy of system geometric parameters. For stereo reconstruction, a deep learning-based detection model, YOLO11, is integrated to automatically locate defect regions and obtain prior information of the detection bounding boxes in both left and right views. A region-constrained and prior-disparity filtering strategy based on the detection boxes is proposed, which determines the intersection of the corresponding epipolar search regions and disparity ranges. This approach confines the matching computation to the defect areas, preventing the propagation of smoothing costs from incorrect matches outside the detection boxes, thereby enhancing stereo matching stability and local reconstruction accuracy. Moreover, the AD-Census stereo matching algorithm is adaptively modified to further suppress noise. The reconstructed point clouds of scratches and pits exhibit relatively uniform density. Measurement results indicate that the relative errors of pit diameter and scratch length are both less than 1%, and the depth measurement error does not exceed 8%, meeting engineering accuracy requirements. The proposed method demonstrates strong robustness and precision under complex illumination and spatially constrained conditions, outperforming conventional approaches in terms of calibration accuracy, local reconstruction quality, and measurement reliability. This work provides an effective technical foundation for high-precision 3D surface morphology measurement of in-service aero-engine blades.

    参考文献
    相似文献
    引证文献
引用本文

丰雅鹏,燕必希,董明利,庄炜,余快.基于双目内窥镜的发动机叶片缺陷重建方法研究[J].仪器仪表学报,2025,46(10):345-355

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码