一种用于压电定位台原子级轨迹跟踪的MB-PSO算法
DOI:
CSTR:
作者:
作者单位:

1.江苏集萃微纳自动化系统与装备技术研究所有限公司苏州215000; 2.苏州科技大学电子与信息工程学院苏州215000;3.苏州大学机电工程学院苏州215000

作者简介:

通讯作者:

中图分类号:

TH89TP242

基金项目:

国家重点研发计划(2023YFF0721400)、国家自然科学基金(62273247)项目资助


A MB-PSO algorithm for atomic-level trajectory tracking of a piezoelectric positioning platform
Author:
Affiliation:

1.Institute of Micro-Nano Automation System and Equipment Technology of JITRI,Suzhou 215000, China; 2.School of Electronic and Information Engineering, Suzhou University of Science and Technology,Suzhou 215000, China; 3.School of Mechanical and Electrical Engineering, Soochow University,Suzhou 215000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    跨尺度压电定位台凭借其毫米级行程、纳米级定位精度,被视为能够实现原子级制造系统的核心部件。然而,压电陶瓷驱动固有的迟滞非线性特性严重制约了其在微定位模式下的轨迹跟踪精度,难以满足亚纳米级精度需求。在此背景下,对迟滞模型参数进行精确辨识成为提升跟踪精度的关键环节。针对传统粒子群优化辨识多维复杂迟滞模型参数难以获取全局最优解的问题,提出一种多模态贝叶斯优化PSO的参数辨识算法。首先,基于非对称BoucWen模型建立能够表征迟滞非线性的系统动力学模型;其次,通过对传统PSO算法参数辨识结果分析,引入模态分工机制并融合贝叶斯优化进行局部搜索得到MB-PSO算法,旨在克服传统辨识算法易陷入局部最优等不足。为了验证算法的有效性,通过与PSO、遗传算法、差分进化算法进行对比验证,实验结果显示MB-PSO能够将参数波动率抑制在12.3%以内。进一步地,为评估所提算法在提升迟滞模型精度与压电定位台轨迹跟踪精度的有效性,进行了迟滞表征能力与轨迹跟踪精度对比测试。测试结果显示,基于MB-PSO辨识的迟滞模型最大位移误差仅为6.871 nm,引入该迟滞模型的轨迹跟踪控制器将轨迹跟踪误差抑制在0.976 nm以内,实现了亚纳米级跟踪精度,为压电定位台系统实现原子级制造奠定基础。

    Abstract:

    The cross-scale piezoelectric positioning platform, with its millimeter-scale travel range and nanometer-level positioning accuracy, is considered a core component for enabling atomic-scale manufacturing systems. However, the inherent hysteresis nonlinear characteristics of piezoelectric ceramic actuators severely restrict their trajectory tracking accuracy under micro-positioning mode, making it difficult to meet the sub-nanometer precision requirements. In this context, the precise identification of hysteresis model parameters becomes a crucial step in improving tracking accuracy. To address the issue that traditional particle swarm optimization struggles to obtain the global optimal solution for identifying multi-dimensional complex hysteresis model parameters, a multi-modal Bayesian optimization PSO parameter identification algorithm is proposed. First, a system dynamics model capable of characterizing hysteresis nonlinearity is formulated based on the asymmetric Bouc-Wen model. Then, based on the analysis of the parameter identification results of the traditional PSO algorithm, a modal division mechanism is introduced, and Bayesian optimization is integrated for local search. In this way, the MB-PSO algorithm is developed. This is intended to overcome the limitations of traditional identification algorithms, such as being easily trapped in local optima. To evaluate the effectiveness of the proposed algorithm, a comparative experiment is implemented against PSO, the genetic algorithm, and the differential evolution algorithm. The experimental results show that the parameter fluctuation under MB-PSO is suppressed to within 12.3%. Furthermore, to evaluate the efficacy of the algorithm in improving both hysteresis modeling accuracy and trajectory tracking performance of the piezoelectric positioning platform, comparative tests on hysteresis characterization and trajectory tracking accuracy are carried out. The results show that the maximum displacement error of the hysteresis model identified by MB-PSO is limited to 6.871 nm, and the trajectory tracking error, when incorporating this model into the control system, is reduced to within 0.976 nm, achieving sub-nanometer tracking accuracy. The foundation is laid by this work for atomic-level manufacturing to be achieved with piezoelectric positioning platform systems.

    参考文献
    相似文献
    引证文献
引用本文

姜健康,孟思源,蔡雅斓,居倩,汝长海.一种用于压电定位台原子级轨迹跟踪的MB-PSO算法[J].仪器仪表学报,2025,46(9):13-23

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码