基于小目标感知增强的风机叶片缺陷智能检测
DOI:
CSTR:
作者:
作者单位:

1.华南理工大学未来技术学院广州510006; 2.鹏城实验室深圳518055; 3.华南理工大学电力学院 广州510006; 4.中国能源建设集团国际工程有限公司北京100025

作者简介:

通讯作者:

中图分类号:

TP391TH161.1

基金项目:

国家自然科学基金(62303062)项目资助


Wind turbine blade intelligent defect detection based on small object perception enhancement
Author:
Affiliation:

1.School of Future Technology, South China University of Technology, Guangzhou 510006, China; 2.Peng Cheng Laboratory, Shenzhen 518055, China; 3.School of Electric Power Engineering, South China University of Technology, Guangzhou 510006, China; 4.China Energy Engineering Group International Engineering Co., Ltd., Beijing 100025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前风机叶片检测存在图像分辨率高、叶片缺陷目标小和形态复杂等问题,导致其表面缺陷难以准确识别和定位。为了解决以上问题,提出一种基于小目标感知增强的风机叶片缺陷检测方法。首先,构建了动态通道空间卷积模块来改进YOLOv8检测网络,利用空间重构模块和通道重构模块,减少模型运算量和降低特征提取冗余,进而提高模型的检测性能。其次,设计了一个小目标感知增强网络,该网络由多尺度Transformer模块、特征融合模块和小目标检测头构成,其多尺度Transformer模块能协助网络理解小目标周边区域的语义,具体包括多尺度融合模块、多层感知机和查询选择模块,进而实现小目标缺陷特征的粗提取。随后,利用双线性插值和上下文引导注意力融合机制,实现缺陷浅层-深层特征的尺寸与语义对齐,以提升模型对小目标缺陷的感知。最后,引入自适应分布交并比损失函数来提升缺陷定位精度,并降低类别不平衡对检测精度的影响。在海上风电机组自建叶片数据集进行实验验证,结果表明本文提出的缺陷检测网络平均精度可达0.815,相比较YOLOv8模型和RT-DETR模型,分别提高了0.134和0.182,且在RTX3090 GPU上推理速度为14 fps,满足实时检测的要求,进一步证明了其在风机叶片缺陷检测应用上的潜力。

    Abstract:

    At present, wind turbine blade inspection suffers from high-resolution imagery, extremely small defects, and complex morphologies, making accurate identification and localization of surface flaws difficult. To address these challenges, this article proposes a small object perception-enhanced defect detection method for turbine blades. Firstly, a dynamic channel spatial convolution module is constructed to improve the YOLOv8 detection network. By using spatial and channel reconstruction modules, the computational load of the model is reduced and feature extraction redundancy is lowered, thereby enhancing the detection performance of the model. Secondly, a small object perception enhancement network is designed, which consists of a multi-scale Transformer block, a feature fusion module, and a small object detection head. The multi-scale Transformer block assists the network in understanding the semantics of the surrounding areas of small objects, including a multi-scale fusion module, a multi-layer perceptron, and a query selection module, to achieve coarse extraction of small object defect features. Subsequently, bilinear interpolation and context-guided attention fusion mechanisms are employed to align the size and semantics of shallow and deep defect features, enhancing the model′s perception of small object defects. Finally, an adaptive distribution powerful IoU Loss function is introduced to improve defect localization accuracy and reduce the impact of class imbalance on detection accuracy. Experiments implemented on a self-built offshore wind turbine blade dataset demonstrate that the proposed defect detection network achieves an average precision of 0.815. Compared with the YOLOv8 and RT-DETR models, it shows improvements of 0.134 and 0.182, respectively. Moreover, it achieves an inference speed of 14 frames per second on an RTX3090 GPU, meeting the requirements for real-time detection and further proving its potential for application in wind turbine blade defect detection.

    参考文献
    相似文献
    引证文献
引用本文

张泽辰,姚顺春,梁骁俊,袁宝义,张超波.基于小目标感知增强的风机叶片缺陷智能检测[J].仪器仪表学报,2025,46(9):159-172

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码