故障预测与健康管理领域大语言模型:应用与展望
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨工业大学电子与信息工程学院哈尔滨150001; 2.哈工大郑州研究院郑州450000

作者简介:

通讯作者:

中图分类号:

TP391TH89

基金项目:


Prognostics and health management domain-specific large language models:Applications and prospects
Author:
Affiliation:

1.School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; 2.Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    故障预测与健康管理(PHM)技术通过监测、分析和预测设备健康状态,实现主动维护和风险规避,是保障系统安全稳定运行的关键。尽管基于物理模型和数据驱动的PHM方法体系已经较为完整,但是经典方法在面对日渐复杂的工业系统的海量异构数据,特别是非结构化文本和多模态信息时,仍然存在专家知识集成困难,以及泛化能力不足的短板。近年来,Transformer结构与大语言模型(LLM)方兴未艾,为PHM领域内专业知识的有效利用带来新兴的高精度预测范式,其应用潜力和优势包括但不限于知识提取与整合、少样本学习泛化、智能决策支持等。为全面综述大语言模型赋能PHM的现状及前景,首先,介绍PHM常见任务、Transformer结构与通用大语言模型基本概念;其次,介绍领域专用大语言模型构建任务中的领域知识构建与注入方法(包括内部参数优化和外部知识增强),给出PHM领域专用大语言模型的整体框架;然后,从部件级、子系统级、复杂系统级这3个层次,并面向任务深入剖析并综述PHM领域大语言模型框架与应用现状,包括故障诊断、健康状态估计、剩余使用寿命预测和异常检测等典型PHM领域任务;最后,从模型轻量化、边缘部署、广义复杂系统角度,展望PHM领域专用大语言模型未来应用发展的挑战和机遇。

    Abstract:

    Prognostics and health management (PHM) enables proactive maintenance and risk mitigation by monitoring, analyzing, and forecasting equipment health, undergirding safe and stable system operation. While physics-based and data-driven PHM paradigms are relatively mature, classical approaches struggle to integrate expert knowledge and generalize when confronted with massive heterogeneous data, especially unstructured text and multimodal information generated by increasingly complex industrial systems. Recently, the rapid development of Transformer architecture and large language model (LLM) have opened a high-precision prediction paradigm that efficiently exploits domain expertise, offering advantages such as knowledge extraction and fusion, few-shot generalization, and intelligent decision support. This review comprehensively surveys the current status and future prospects of PHM empowered by LLM. First, canonical PHM tasks, together with Transformer architecture and general LLM, are introduced. Second, domain-specific LLM construction is elaborated with respect to domain-knowledge creation and injection, covering internal parameter optimization and external knowledge augmentation; a unified framework for PHM domain-specific LLM is presented. Third, current PHM domain-specific LLM-based frameworks and applications are dissected in-depth from a task-oriented perspective across components, subsystems, and complex systems levels, focusing on fault diagnosis, state of health estimation, remaining useful life prediction, and anomaly detection. Finally, future challenges and opportunities are outlined regarding model compression, edge deployment, and generalized complex systems.

    参考文献
    相似文献
    引证文献
引用本文

彭宇,季拓,郭楚亮.故障预测与健康管理领域大语言模型:应用与展望[J].仪器仪表学报,2025,46(10):2-21

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码