凹型扁平螺线管线圈抗偏移性能研究
DOI:
CSTR:
作者:
作者单位:

重庆理工大学电气与电子工程学院重庆400054

作者简介:

通讯作者:

中图分类号:

TH162TM724

基金项目:

重庆市自然科学基金面上项目(CSTB2024NSCQ-MSX0382)、重庆市教育委员科学技术研究项目(KJQN202201103)资助


Research on misalignment tolerance of concave planar spiral coils for wireless power transfer systems
Author:
Affiliation:

School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无线电能传输(WPT)系统中传统扁平螺线管磁耦合机构在水平横向偏移条件下耦合系数显著下降、传输效率受限的问题,提出了一种面向工程应用的凹型扁平螺线管线圈磁耦合机构设计方法,以实现系统的强抗偏移性能。首先,基于基波分析法(FHA)对典型补偿拓扑进行电压增益特性研究,揭示电压增益G与互感之间的解析关系,阐明通过减小偏移对互感M的敏感性可提升系统抗偏移能力。其次,从绕组排布角度出发,深入分析线圈绕线方式、匝间距及端口凹陷角度对磁场分布均匀性及耦合系数保持率的作用机理,并提出相应的参数权衡与优化方法。随后,基于Ansys/Maxwell建立多构型磁耦合机构仿真模型,比较不同结构在水平偏移条件下的磁场分布与耦合系数变化规律。结果表明,采用非均匀排布、端口凹陷角度为30°的凹型结构在±60%水平偏移下仍能保持较高的耦合系数和稳定的传输性能。为实现轻量化与集成化,接收端设计为柔性印刷电路板(FPC)线圈结构,满足中小功率便携式设备对小型化与高功率密度的要求。最后,搭建了一台100 W实验样机,实验结果显示:在接收端X轴±15 mm、Y轴±30 mm的偏移范围,系统输出电压波动控制在4%以内,最大传输效率达到87.3%。验证了所提磁耦合结构在偏移容差与系统性能提升方面的有效性及工程应用价值。

    Abstract:

    To address the decline in coupling coefficient and transmission efficiency of traditional flat solenoidal magnetic coupling structures in wireless power transfer (WPT) systems under lateral misalignment, this article proposes an engineering-oriented concave flat solenoidal coil design method with enhanced misalignment tolerance. First, based on the first harmonic approximation (FHA), the voltage gain characteristics of typical compensation topologies are analyzed, and an analytical relationship between voltage gain G and mutual inductance M is established. It shows that reducing the sensitivity of M to lateral displacement can improve system tolerance to misalignment. Secondly, from the perspective of coil arrangement, the effects of winding distribution, turn spacing, and concave end angle on magnetic field uniformity and coupling coefficient retention are investigated, and trade-off and optimization methods are proposed. Subsequently, magnetic coupling structures are modeled in Ansys/Maxwell, and their magnetic field distributions and coupling variations under lateral misalignment are compared. The results shows that a non-uniform winding distribution with a 30° concave end angle can maintain a high coupling coefficient and stable transfer performance under ±60% lateral displacement. For lightweight and integrated design, the secondary side is implemented with a flexible printed circuit board (FPC) coil, meeting the miniaturization and high-power density requirements of medium- and small-scale portable devices. Finally, a 100 W prototype shows that within a misalignment range of ±15 mm along the X-axis and ±30 mm along the Y-axis, output voltage fluctuation is within 4%, and maximum transmission efficiency reaches 87.3%. These findings validate the effectiveness and engineering applicability of the proposed magnetic coupling structure in enhancing lateral misalignment tolerance and system performance.

    参考文献
    相似文献
    引证文献
引用本文

杨奕,林治浩,张路,李海啸,周钊屹.凹型扁平螺线管线圈抗偏移性能研究[J].仪器仪表学报,2025,46(10):142-155

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码