基于自回归嵌入的风电机组传动系统双阈值状态监测
DOI:
CSTR:
作者:
作者单位:

1.燕山大学电气工程学院秦皇岛066000; 2.中海油能源发展装备技术有限公司天津300457

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

中央引导地方科技发展资金项目(226Z4302G)资助


Dual-threshold condition monitoring of wind turbine drive train system based on autoregressive embedding
Author:
Affiliation:

1.School of Electrical Engineering, Yanshan University, Qinhuangdao 066000, China; 2.CNOOC EnerTech Equipment Technology Co., Ltd., Tianjin 300457, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风电机组是一种将风能转换为电能的复杂机电混合系统,其传动系统包含齿轮、轴承等众多高精度的机械部件,这些部件在长期运转过程中,容易出现疲劳、磨损等问题,导致传动系统易于发生各种故障,严重影响机组运行的安全与发电效率。为保证风电机组整机运行的安全性,需要高效准确地检测出传动系统的异常运行状态。针对现有研究复杂运行状态捕捉能力弱以及部件维护、剔除白噪声干扰准确率低的问题,构建了一种基于自回归嵌入的可学习分解与双注意力网络的状态监测模型。首先,对数据采集与监测系统(SCADA)收集到的数据进行预处理,并且通过相关性分析选择出与故障演化强相关的温度等特征参数。其次,引入自回归嵌入模块,使用动态令牌更好地捕捉多维时间序列特征,进行传动系统相关温度变量的预测,实现故障特征的动态建模。然后,提出双阈值判别的监测网络,结合相关变量的残差与信息熵确定双重健康阈值,通过阈值的双重机制,监测过程能够进一步剔除白噪声等异常信号,提供准确的预警时间。最后,通过两个实际风电机组传动系统的故障案例验证了所构建模型的有效性,当风电机组发生故障时,相较于传统的数据采集与监测系统(SCADA),可以提前约6~10天对故障信号进行早期预警。

    Abstract:

    Wind turbines are complex electromechanical hybrid systems that convert wind energy into electrical power. Their transmission systems include numerous high-precision mechanical components such as gears and bearings. These components are prone to fatigue and wear during prolonged operation, making the transmission system vulnerable to various failures, which significantly impacts both the safety of the units and their power generation efficiency. To ensure the safety of wind turbines, it is necessary to efficiently and accurately detect abnormal states in the transmission system. This paper addresses the limitations of existing research in capturing complex operational states and the low accuracy in component maintenance and white noise rejection. A state monitoring model based on a learnable decomposition and dual-attention network using autoregressive embeddings is proposed. First, the data collected by the supervisory control and data acquisition (SCADA) system is preprocessed, and correlation analysis is performed to select feature parameters such as temperature that are strongly correlated with fault evolution. Next, an autoregressive embedding module is introduced, utilizing dynamic tokens to better capture multidimensional time-series features. This allows for the prediction of relevant temperature variables in the transmission system, achieving dynamic modelling of fault characteristics. Then, a dual-threshold discrimination monitoring network is proposed, combining the residuals and information entropy of relevant variables to determine the dual health thresholds, further eliminates abnormal signals such as white noise and providing accurate warning times. Finally, the effectiveness of the proposed model is verified through two actual wind turbine transmission system failure cases. Compared to traditional SCADA systems, early warning signals can be detected approximately 6 to 10 days in advance when a fault occurs in the wind turbine.

    参考文献
    相似文献
    引证文献
引用本文

曹利宵,贾晓冰,李宁,常雯博,苏保中.基于自回归嵌入的风电机组传动系统双阈值状态监测[J].仪器仪表学报,2025,46(9):360-371

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码