电动汽车串联电弧故障检测模型研究
DOI:
CSTR:
作者:
作者单位:

辽宁工程技术大学电气与控制工程学院葫芦岛125105

作者简介:

通讯作者:

中图分类号:

TM501.2TH89

基金项目:

国家自然科学基金项目(52104160)、辽宁省教育厅科技创新团队项目(LJ22241047064)资助


Research on series arc fault detection model for electric vehicles
Author:
Affiliation:

Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电动汽车主电路电气接触点因接触不良等原因易产生串联型电弧故障,严重威胁车内人员生命安全。首先围绕吉利帝豪 EV450 电动汽车搭建实验平台,开展电动汽车电弧故障实验研究,以电源端电压为研究对象,建立了基于一维卷积的电弧故障检测模型。然而,传统深度学习模型在实际应用中面临两大核心难题:一是模型可解释性差,难以明确故障检测的关键依据;二是模型参数量大、计算复杂度高,难以满足电动汽车故障检测对实时性与轻量化的严苛要求。为解决上述问题,采用一种融合多目标优化的网络结构搜索策略,将准确率、可解释指标和浮点运算量融入到网络结构搜索的搜索目标中,通过多维度权衡实现网络结构的自适应优化,有效改善了初始模型性能。随后,结合动态时间规整、粒子群算法和模拟余弦退火优化算法,构建了一套特征通道合并策略。其中,动态时间规整能够度量不同通道输出的相似性;粒子群算法凭借其全局搜索能力,快速定位潜在的最优通道合并组合;模拟余弦退火算法进一步提升了通道合并的合理性与有效性。通过该策略,成功构建了准确性、可解释性、轻量化兼备的电动汽车电弧故障检测模型,最后,通过对模型进行泛化性分析及与其他检测方法对比分析,证实了在电动汽车电弧故障检测方面性能优异。

    Abstract:

    In electric vehicles, the electrical contact points within the main circuit are susceptible to series arc faults as a result of poor contact and other factors, which poses a significant threat to the safety of vehicle occupants. First, this study constructed an experimental platform centered on the Geely Emgrand EV450 electric vehicle and undertook experimental investigations on arc faults in electric vehicles. With the power supply terminal voltage serving as the research focus, a one-dimensional convolution based arc fault detection model was developed. However, traditional deep learning models encounter two core challenges in practical applications. First, the models have poor interpretability, making it difficult to clarify the key basis for fault detection. Second, they have a large number of parameters and high computational complexity, making it difficult to meet the strict requirements for real-flortime and lightweight fault detection in electric vehicles. To address these issues, this study adopts a network structure search strategy integrating multi-objective optimization. which incorporates accuracy, interpretability indicators, and floating point operations into the search objectives of the network structure search. Through multidimensional trade-offs, adaptive optimization of the network structure is achieved, which effectively improves the initial performance of the model. Subsequently, a feature channel merging strategy was developed by integrating dynamic time warping, particle swarm optimization, and simulated annealing algorithms. Among these methods, Dynamic time warping can measure the similarity of outputs from different channels; Particle swarm optimization, with its global search capability, quickly locates potential optimal channel merging combinations; and Simulated annealing further enhances the rationality and effectiveness of channel merging. Using this strategy, an accurate, interpretable, and lightweight arc fault detection model for electric vehicles has been successfully developed. Finally, generalization analysis and comparative analysis with other detection methods confirm that the model exhibits excellent performance in electric vehicle arc fault detection.

    参考文献
    相似文献
    引证文献
引用本文

刘艳丽,杨贺允,吕正阳,张思怡,金峰逸.电动汽车串联电弧故障检测模型研究[J].仪器仪表学报,2025,46(10):165-178

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码