融合宽带超声与深度学习的变压器油微水非侵入式检测方法
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室武汉430068; 2.国网上海市电力公司青浦供电公司上海201700

作者简介:

通讯作者:

中图分类号:

TH70

基金项目:

国家重点研发计划课题(2022YFB2404104)项目资助


Integrated broadband ultrasound and deep learning technique for non-invasive trace moisture detection in transformer oil
Author:
Affiliation:

1.Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China; 2.State Grid Shanghai Municipal Electric Power Company QingPu Power Supply Company, Shanghai 201700, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统变压器油中微量水分含量检测方法存在的破坏性取样、抗干扰能力弱等瓶颈问题,提出了一种基于宽带超声时频分析与深度学习融合的非侵入式高精度检测技术。该方法结合宽带多频超声扫描与深度神经网络建模,实现了油中微量水分复杂声学特征的动态解析与定量预测。研究采集240组变压器油样,利用精密微水检测仪标定其真实含水量构建数据集(训练集220组、测试集20组)。对每组油样施加6种中心频率的宽带超声激励,采集回波信号并采用连续小波变换(CWT)进行时频分析,提取形成128×1 000维的高/低频联合特征矩阵作为模型输入,对应油样真实含水量作为输出。核心创新在于构建了卷积神经网络-长短期记忆网络(CNN-LSTM)混合深度学习模型:利用CNN高效提取CWT时频谱图蕴含的空间模式特征,同时利用LSTM捕捉超声信号在多频率维度上的时序动态关联,从而建立从复杂声学特征到水分含量的强非线性映射。多模型对比实验表明,该CNN-LSTM模型预测性能显著优越,平均绝对误差(MAE)低至1.33 mg/kg,平均绝对百分比误差(MAPE)为7.167%,且决定系数(R2)高达0.958。该研究为变压器油中微量水分的在线、无损、高精度监测提供了具有重要工程应用价值的新方案。

    Abstract:

    To address the critical limitations of conventional methods for detecting trace moisture content in transformer oil-such as destructive sampling and poor anti-interference capability-this study proposes a non-invasive, high-precision detection technique based on the integration of broadband ultrasonic time-frequency analysis and deep learning. The approach combines broadband multi-frequency ultrasonic scanning with deep neural network modeling to dynamically characterize and quantitatively predict complex acoustic signatures associated with trace moisture in oil. A dataset comprising 240 transformer oil samples was established, with ground-truth moisture content calibrated using a precision trace moisture detector (220 samples for training, 20 for testing). Each sample was subjected to broadband ultrasonic excitation at six distinct center frequencies. Echo signals were processed via Continuous Wavelet Transform (CWT) for time-frequency analysis, extracting a 128×1 000-dimensional joint high/low-frequency feature matrix as model input, with actual moisture content as output. The core innovation lies in constructing a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) deep learning model: The CNN branch efficiently extracts spatial patterns from the CWT time-frequency spectrograms, while the LSTM branch captures temporal dynamics and cross-frequency dependencies within ultrasonic features. This synergy establishes a robust nonlinear mapping between complex acoustic characteristics and moisture content. Comparative experiments with multiple models demonstrate the superior performance of the CNN-LSTM framework, achieving an exceptionally low mean absolute error (MAE) of 1.33 mg/kg, a mean absolute percentage error (MAPE) of 7.167%, and a high coefficient of determination (R2) of 0.958. This research provides a novel, industrially viable solution for online, non-destructive, and high-accuracy monitoring of trace moisture in transformer oil.

    参考文献
    相似文献
    引证文献
引用本文

覃兆宇,孔洒洒,朱凯,姚远,梁晟.融合宽带超声与深度学习的变压器油微水非侵入式检测方法[J].仪器仪表学报,2025,46(9):186-197

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码