一种计及长大坡道电气化铁路再生制动电压稳定性评估方法
DOI:
CSTR:
作者:
作者单位:

1.西南交通大学电气工程学院成都611756; 2.中国铁路经济规划研究院有限公司北京100038; 3.中铁二院工程集团有限责任公司电气化设计研究院成都610031; 4.新南威尔士大学悉尼NSW 2052

作者简介:

通讯作者:

中图分类号:

U223.6TH89

基金项目:

中国国家铁路集团有限公司重大课题(K2024G004)、国家自然科学基金青年基金(52202450)、四川省自然科学基金(24NSFSC7137)、中国铁道科学研究院集团有限公司机车车辆研究所技术服务(KYL202411-0134)、四川省重大科技专项(2023ZDZX0008-04)项目资助


An electrified railway traction grid voltage stability assessment method under regenerative braking regarding long and steep grades
Author:
Affiliation:

1.School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China; 2.China Railway Economic and Planning Research Institute Co. Ltd., Beijing 100038, China; 3.Electrification Design and Research Institute, China Railway Eryuan Engineering Group Co. Ltd., Chengdu 610031, China; 4.University of New South Wales, Sydney NSW 2052, Australia

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对长大坡道重负荷电气化铁路运行中因再生制动导致的牵引网电压抬升问题,提出了一种基于电压抬升机理的稳定性评估方法。首先,从理论上推导空载电压、抬升电压、负荷电压与制动电流的矢量关系,构建电压抬升迭代计算模型,揭示制动过电压形成机理。其次,系统分析功率因数、再生功率、负荷位置及系统失稳等因素对电压稳定性作用规律。结果表明:功率因数越高,系统在再生与牵引双工况下电压波动越易平衡,可显著减缓电压抬升;再生功率变化对电压稳定性影响有限;负荷位于供电臂末端时电压抬升最明显,而靠近牵引变电所时抬升幅度显著减弱。并联供电方式可有效提高系统冗余,抑制电压波动。进一步结果显示,空载电压高低对牵引供电能力与再生电压抬升作用存在差异:空载电压较高时系统对再生功率的适应性增强,但过压风险增大;偏低则抬升减弱但牵引能力不足。建议将空载电压控制在27.5~28.5 kV。最后,研究提出通过引入适量感性负载实现电压抑制的策略。结果表明:增大空载电压夹角、减小负荷电压夹角有利于降低再生制动时的负荷电压。工程应用中需重视感性负载在再生与牵引工况间的动态调节。上述研究为长大坡道电气化铁路的电压稳定性调控提供了理论依据和工程参考。

    Abstract:

    This article investigates the voltage rise problem induced by regenerative braking in heavy-load electrified railways with long gradients and proposes a stability evaluation method based on the rise mechanism. An iterative model is formulated by deriving vector relationships among no-load voltage, rise voltage, load voltage, and braking current, revealing the formation of overvoltage during braking. The effects of power factor, regenerative power, load position, and system instability on voltage stability are analyzed. Results show that a higher power factor facilitates voltage balance under combined traction and braking, significantly mitigating voltage rise, while the influence of regenerative power variation is limited. Voltage rise is most severe when the load is located at the end of the power supply arm and weakest near the substation. Parallel power supply enhances system redundancy and suppresses fluctuations. Further analysis indicates that no-load voltage level plays a dual role, which is that higher values improve adaptability to regenerative power but increase overvoltage risk. However, lower values reduce rise but constrain traction capacity. A recommended range of 27.5~28.5 kV is suggested. In addition, introducing inductive loads is shown to effectively suppress voltage rise by enlarging the no-load voltage angle and reducing the load voltage angle. An engineering application requires dynamic adjustment of inductive loads between regenerative and traction states. This study provides theoretical and practical guidance for voltage stability regulation in long-gradient electrified railways.

    参考文献
    相似文献
    引证文献
引用本文

夏炎,邓云川,黄可,梁靖坤,邓皓元.一种计及长大坡道电气化铁路再生制动电压稳定性评估方法[J].仪器仪表学报,2025,46(10):189-198

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码