基于分层特征融合和终点诱导的车辆多模态轨迹预测
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(61873064)、江苏省重点研发计划(BE2022139)项目资助


Multi-modal vehicle trajectory prediction based on hierarchical feature fusion and endpoint induction
Author:
Affiliation:

School of Instrument Science and Engineerning, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆多模态轨迹预测作为感知和决策规划之间的桥梁,在自动驾驶系统中发挥着重要作用。针对现有方法特征融合不充分和难以有效平衡预测精度和效率的问题,提出了一种基于分层特征融合和终点诱导的车辆多模态轨迹预测模型(HFF-EI)。首先,利用一维残差卷积和特征金字塔网络(FPN)编码车辆历史轨迹信息,充分提取特征;其次,构建了一种分层特征融合结构,对车辆和地图分别进行特征融合后再进行全局特征融合,实现场景各元素特征高效且全面融合;然后,引入基于动态权重模式的多层感知机(MLP)进行轨迹终点预测,提高模型在不同交通场景下的自适应能力;最后,提出了一种基于终点信息交互的终点细化模块,使用注意力机制在更长时空范围交互轨迹信息,提高了车辆多模态轨迹预测的准确性。在公开数据集Argoverse1进行消融实验和对比实验,消融实验结果表明:HFF-EI模型的3个模块均有效提升了轨迹预测性能,在最小平均位移误差、最小最终位移误差、丢失率和具有惩罚项的最小最终位移误差上分别降低8.87%、13.52%、31.07%和8.93%;HFF-EI模型在测试集上最小最终位移误差为1.134 m,具有惩罚项的最小最终位移误差为1.773 m,推理时间为10.22 ms,与10个基准模型相比综合性能优势显著,证明了所提模型的有效性。

    Abstract:

    Multi-modal vehicle trajectory prediction, as a bridge between perception and decision planning, plays an important role in autonomous driving systems. Aiming at the problems of insufficient feature fusion and difficulty in balancing the prediction accuracy and efficiency of existing methods, a vehicle multimodal trajectory prediction model based on Hierarchical Feature Fusion and End-point Induction (HFF-EI) is proposed. Firstly, One-dimensional residual convolution and a feature pyramid network (FPN) are used to encode the vehicle historical trajectory information, thereby fully extracting the relevant features. Then a hierarchical feature fusion structure is constructed, and local feature fusion is carried out for the vehicle and the map, followed by global feature fusion, achieving efficient and comprehensive fusion of scene features across all elements. Secondly, a multi-layer perceptron (MLP) based on the dynamic weight model is introduced for trajectory endpoint prediction, enhancing the adaptive ability of the model under different traffic scenes. Finally, an endpoint refinement module based on endpoint information interaction is proposed, which uses the attention mechanism to interact trajectory information in a longer spatial and temporal ranges. Ablation and comparative experiments were conducted on the public dataset Argoverse1. Results of the ablation experiments show that the three modules of the HFF-EI model effectively improve the performance of trajectory prediction, and reduce the minimum average displacement error, minimum final displacement error, loss rate and minimum final displacement error with penalty by 8.87%, 13.52%, 31.07%, and 8.93%, respectively. On the test set, the minimum final displacement error is 1.134 m, the minimum final displacement error with penalty term is 1.773 m and the inference time is 10.22 ms, which proves the effectiveness of the proposed model by its comprehensive performance advantages compared with the 10 benchmark models.

    参考文献
    相似文献
    引证文献
引用本文

陈熙源,聂姝涵,刘炜焱,经纬铭.基于分层特征融合和终点诱导的车辆多模态轨迹预测[J].仪器仪表学报,2025,46(9):173-185

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码