基于多参数BP网络的滩涂地物辐射特性预测方法
DOI:
CSTR:
作者:
作者单位:

国防科技大学智能科学学院长沙410073

作者简介:

通讯作者:

中图分类号:

TH865

基金项目:


Prediction method of mudflat objects radiation characteristics based on multi parameter BP network
Author:
Affiliation:

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滩涂地区是我国海岸带的重要组成部分,其有效监测对于经济发展和资源利用具有重要的意义。然而滩涂地带的辐射特性受地表异质性和气象敏感性等多因素耦合影响,难以获取其真实的光谱特征,亟需发展高效、灵活、准确的光谱辐射特性获取及预测方法。基于此,提出了一种多参数BP网络的滩涂地物辐射特性预测方法。首先,针对滩涂区域光谱数据的快速获取需求,构建一套无人机载的多光谱数据采集系统,其中光谱通道包括450、555、660、720、750和840 nm共6个波段,七要素气象仪记录光照强度、温度、湿度等数据;其次,提出了一种基于标准灰板的光谱数据预处理方法,通过多光谱和气象数据获取、时间对齐以及标准灰板校正获得标准化光谱数据;最后,提出了一种基于多参数BP神经网络的辐射特性预测方法,在光强、温度、湿度等气象条件约束下实现对不同滩涂地物的真实辐射特性预测。基于无人机多光谱遥感系统收集了海滩树林、海滩水际以及滩涂沙石共3类滩涂光谱辐射数据,对数据的预测和无监督聚类结果表明,所提方法能有效拟合不同条件下的光谱辐射变化规律,对海岸水际滩涂预测的MAE、MSE、RMSE最小可达0.214 9、0.84 3和0.429 3,为无人机载的滩涂地物遥感监测及辐射特性预测提供了可靠的数据支撑。

    Abstract:

    As a vital component of coastal zones, the effective analysis of tidal flat areas holds significant implications for economic development and resource utilization. However, due to the influence of surface heterogeneity and meteorological sensitivity in mudflat areas, it is difficult to characterize the true spectral features of mudflat objects. Therefore, there is an urgent need to develop efficient, flexible, and accurate methods for acquiring and predicting spectral radiation characteristics. Based on this, this paper proposed a multi-parameter BP network-based method for radiation characteristics predicting of tidal flat features. Firstly, aiming at the detection requirements of the tidal flat areas, this paper constructed a set of unmanned aerial vehicle (UAV)-borne multi-spectral data acquisition system, in which the spectral channels include 450, 555, 660, 720, 750, and 840 nm, and the 7-element meteorological instrument that records data such as light intensity, temperature and humidity. Secondly, we proposed a spectral data preprocessing method based on standard gray boards, which obtains standardized spectral data through multi-spectral meteorological data, time stamp alignment, and standard gray board correction. Finally, a multi-parameter BP neural network based characteristic prediction method is designed, enabling the prediction of different tidal flat features under the constraints of meteorological conditions such as light intensity, temperature, and humidity. Based on the UAV multi-spectral remote sensing system, this paper collected three types of spectral radiation data including beach forests, beach water edges and sand gravel. The results of spectral data prediction and clustering show that the proposed algorithm can effectively fit the variation law of different spectral radiation values. The minimum MAE, MSE, and RMSE for the prediction of coastal inter-tidal flats reach 0.214 9, 0.184 3, and 0.429 3, respectively, providing reliable data support for remote sensing monitoring and radiation characteristic prediction of tidal flat features.

    参考文献
    相似文献
    引证文献
引用本文

孙备,郭润泽,孙晓永,郭晓俊,蒋薇.基于多参数BP网络的滩涂地物辐射特性预测方法[J].仪器仪表学报,2025,46(9):245-256

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码