基于掩码孪生网络与幂调节损失的恶劣场景车道线检测方法
DOI:
CSTR:
作者:
作者单位:

1.中国矿业大学信息与控制工程学院徐州221116; 2.唐山学院新材料与化学工程学院唐山063000; 3.陆军工程大学训练基地工程装备系徐州221000

作者简介:

通讯作者:

中图分类号:

TH89TP183

基金项目:

国家自然科学基金(62473368,62373360)项目资助


Robust lane detection in challenging scenarios using a masked siamese network with power-modulated loss
Author:
Affiliation:

1.School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2.School of New Materials and Chemical Engineering, Tangshan University, Tangshan 063000, China; 3.Department of Engineering Equipment, Train Base of Army Engineering University of PLA, Xuzhou 221000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车道线检测是自动驾驶感知系统的核心任务,在复杂交通环境下具有重要的应用价值。尽管现有方法在常规条件下已取得较好检测效果,但在光照不足、逆光、大雾、雨雪等恶劣场景中车道线检测仍面临诸如模糊、断裂与遮挡等挑战。为提升恶劣场景下的车道线检测性能,基于ADNet框架提出了α-SimADNet检测网络。该模型基于ADNet网络实现锚点提取与参数回归,通过引入无负样本对比学习与具有交替优化策略的掩码孪生网络,增强主干网络的特征判别力与环境适应性。这些改进使模型在不增加推理计算开销的前提下,显著提升了恶劣条件下的特征表征能力。此外,针对传统IoU损失在回归困难样本时梯度响应不足的问题,设计了具有幂调节机制的α-GLIoU损失函数,以增强模型对断裂与遮挡车道线的拟合能力。为全面评估所提方法的性能,构建了一个面向恶劣环境的高质量车道线检测数据集HardLane-F100,涵盖106段视频、10 600帧图像,有效缓解了当前公开数据集中极端环境样本覆盖不足的问题。实验结果表明,α-SimADNet在HardLane-F100数据集上的F1@0.5得分达到83.2%,分别较主流方法ADNet与RVLD提升2.7%和1.2%。在更严格的F1@0.7指标下得分60.9%,较ADNet与RVLD分别提升3.8%和3.2%,该方法在多种挑战性场景下均表现出更优性能,充分说明了其在恶劣场景下的有效性。

    Abstract:

    Lane detection is a core task in autonomous driving perception systems, holding significant application value in complex traffic environments. While existing methods perform well under normal conditions, lane detection still faces challenges such as blurriness, disconnection, and occlusion in adverse scenarios like low light, backlighting, heavy fog, rain, and snow. To improve lane detection performance in these harsh conditions, this paper proposes the α-SimADNet detection network, built upon the ADNet framework. This model performs anchor point extraction and parameter regression using ADNet, while enhancing the backbone network′s feature discrimination and environmental adaptability by introducing negative sample contrastive learning and a mask twin network with an alternating optimization strategy. These enhancements significantly improve the model′s feature representation capabilities in challenging environments, without increasing computational overhead during inference. Additionally, to address the insufficient gradient response from traditional IoU loss in the regression of difficult samples, we introduce the power-adjusted α-GLIoU loss function to improve the model′s ability to fit broken and occluded lane lines. To thoroughly assess the proposed method′s performance, we constructed a high-quality lane detection dataset, HardLane-F100, focused on harsh environments, which includes 106 video segments and 10 600 image frames. This dataset effectively mitigates the current public datasets′ lack of extreme environmental samples. Experimental results show that α-SimADNet achieves an F1@0.5 score of 83.2% on the HardLane-F100 dataset, outperforming mainstream methods ADNet and RVLD by 2.7% and 1.2%, respectively. Under the more stringent F1@0.7 metric, it scores 60.9%, improving by 3.8% and 3.2% compared to ADNet and RVLD, respectively. This method demonstrates superior performance across various challenging scenarios, fully proving its effectiveness in harsh environments.

    参考文献
    相似文献
    引证文献
引用本文

邹亮,郭泽沛,李颖娜,鞠进军,雷萌.基于掩码孪生网络与幂调节损失的恶劣场景车道线检测方法[J].仪器仪表学报,2025,46(9):134-145

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码