基于大语言模型的示波器智能控制系统研究
DOI:
CSTR:
作者:
作者单位:

电子科技大学自动化工程学院成都611737

作者简介:

通讯作者:

中图分类号:

TH7TP273

基金项目:


Research on LLM-based intelligent oscilloscope control system
Author:
Affiliation:

The School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611737, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着示波器功能不断丰富,其操作复杂性日益提高,用户在入门阶段面临较高门槛,即使掌握基本操作知识也难以充分利用其高级功能。为降低示波器的操作复杂性,提出了一种基于大语言模型的示波器智能控制系统。首先,该系统采用领域适配技术,通过构建结构化的示波器控制知识图谱生成领域优化提示词,以增强大语言模型对用户操作指令的理解能力。其次,系统引入语义检索技术,利用向量空间建模与近似最近邻搜索从知识图谱中筛选与用户操作指令最相关的知识片段,从而压缩提示词规模并提升推理效率。最后,系统通过融合这两种技术,构建“自然语言指令-标准可编程仪器命令-操作结果反馈”闭环控制机制,实现了利用自然语言对示波器全量功能的精准控制。实验结果表明,在自构建数据集测试中,相较于直接使用大语言模型生成标准可编程仪器命令,应用领域适配技术后的qwen-max-latest模型的标准可编程仪器命令生成准确率从6.20%提升至99.6%;相较于仅应用领域适配技术,应用语义检索技术后在单张RTX 4090显卡上运行qwen2.5-32b-instruct模型,在保证推理精度损失<7%的情况下,平均推理时延从296 s降低至23.3 s。综上所述,所提出的示波器智能控制系统能有效降低示波器使用门槛,为实验仪器的智能化操作提供了技术支持,具有良好的应用前景与推广价值。

    Abstract:

    As the functionality of oscilloscopes continues to expand, their operational complexity has correspondingly increased, posing a significant learning barrier for novice users. Even those with basic operational knowledge often struggle to fully utilize the advanced features. To reduce the operational complexity of oscilloscopes, this study proposes an intelligent control system for oscilloscopes based on the large language model. Firstly, the system employs a domain adaptation technique by constructing a structured knowledge graph for oscilloscope control to generate domain-optimized prompts, thereby enhancing the large language model′s ability to comprehend user instructions. Secondly, the system incorporates semantic retrieval techniques, utilizing vector space modeling and approximate nearest neighbor search to filter the most relevant knowledge fragments from the knowledge graph based on user instructions. This approach compresses the prompt size and improves inference efficiency. Finally, by integrating these two techniques, the system establishes a closed-loop control mechanism of “an natural language instruction-standard commands for programmable instruments-operational feedback”, enabling precise control of the full range of oscilloscope functions through natural language. Experimental results demonstrate that on a self-constructed dataset, compared to directly using a large language model to generate standard commands for programmable instruments, the generation accuracy of the qwen-max-latest model improved from 6.20% to 99.6% after applying the domain adaptation technique. Furthermore, compared to using only domain adaptation, the incorporation of semantic retrieval technique, when running the qwen2.5-32b-instruct model on a single NVIDA RTX 4090 GPU, reduced average inference latency from 296 s to 23.3 s, while maintaining a loss inference accuracy of less than 7%. In summary, the intelligent oscilloscope control system proposed in this study effectively lowers the barrier to using oscilloscopes, provides technical support for the intelligent and automated operation of laboratory instruments, and demonstrates promising application prospects.

    参考文献
    相似文献
    引证文献
引用本文

张士栋,叶芃,张沁川,杨扩军,黄川.基于大语言模型的示波器智能控制系统研究[J].仪器仪表学报,2025,46(10):42-51

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码