基于反正切边缘模型拟合的激光三角光斑定位算法
DOI:
CSTR:
作者:
作者单位:

1.上海交通大学自动化与感知学院上海201100; 2.上海季丰电子股份有限公司上海201100

作者简介:

通讯作者:

中图分类号:

TH74

基金项目:

国家自然科学基金(52475562)项目资助


Laser triangulation spot positioning algorithm based on arctangent edge model fitting
Author:
Affiliation:

1.School of Automation and Intelligent Sensing,Shanghai Jiao Tong University,Shanghai 201100,China; 2.Giga Force Electronics Co.,Ltd., Shanghai 201100,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高精度光斑定位算法是保证激光三角位移传感器精度的关键环节,为了解决光照环境变化引起的激光光斑成像不稳定对传感器精度的影响问题,提出了一种基于反正切边缘模型拟合的光斑定位算法。首先采用双向差分对初始光斑信号进行包络提取,以去除底噪、散斑噪声及尖峰噪声等干扰。然后建立反正切边缘模型,通过对反正切函数进行对称移轴处理,得到符合光斑波形特征的拟合函数。为进一步提高拟合精度,推导了具有物理含义的拟合初始参数计算公式,建立了待拟合参数与光斑特征的关系。采用梯度算法提取包络波形的物理特征构建特征集合,由包络物理特征集计算出拟合初始参数,最后通过Levenberg-Marquardt法进行最小二乘拟合求解出待拟合参数,实现亚像素级光斑质心定位。在激光三角位移传感器中验证算法,实验结果表明:该算法在成像光斑呈现淹没、正常及过曝等细节特征缺失情况下,均可将单点测量重复性误差降低至004 pixels,传感器全量程非线性误差降至0.02%。该算法通过对光斑强度分布进行数学拟合,降低了传感器对严苛成像条件的要求和激光器调节算法的依赖,且采用单帧处理实时性高,算法复杂性适中,适合高速高精度激光三角位移传感器集成开发。

    Abstract:

    High-precision spot localization algorithms are critical for ensuring the accuracy of laser triangulation displacement sensors. To address the impact of unstable laser spot imaging caused by lighting environment variations on sensor precision, a spot localization algorithm based on arctangent edge modeling is proposed. The method first employs bidirectional differential processing to extract envelope signals from initial spot data, effectively eliminating interference such as background noise, speckle noise, and spike noise. An arctangent edge model is then formulated through symmetrical shift processing of the arctangent function, generating a fitting function that aligns with spot waveform characteristics. To enhance fitting accuracy, physically meaningful initial parameter calculation formulas are derived, establishing relationships between fitting parameters and spot features. A gradient algorithm is used to extract physical characteristics from envelope waveforms, forming a feature set from which initial fitting parameters are calculated. Finally, the Levenberg-Marquardt method is applied for least squares fitting to determine optimal parameters, achieving sub-pixel-level spot centroid localization. Verified through laser triangulation sensor experiments the algorithm shows reduced single-point measurement repeatability errors to 0.04 pixels and full-scale nonlinearity errors to 0.02% across various imaging conditions, including submerged, normal, and overexposed scenarios. By mathematically modeling spot intensity distribution, this algorithm lowers sensor requirements for harsh imaging environments and reduces dependence on laser adjustment algorithms. Its real-time processing capability with single-frame handling, moderate complexity, and suitability for integrated development of high-speed, high-precision laser triangulation sensors make it an ideal solution.

    参考文献
    相似文献
    引证文献
引用本文

路思意,贾菊,南卓江,陶卫,郑朝晖.基于反正切边缘模型拟合的激光三角光斑定位算法[J].仪器仪表学报,2025,46(9):61-71

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码