图谱RAG赋能的航天器机电设备故障诊断
DOI:
CSTR:
作者:
作者单位:

1.北京航空航天大学仪器科学与光电工程学院北京100191; 2.北京航空航天大学自动化科学 与电气工程学院北京100191

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家重点研究发展计划(2022YFB3304600)、国家自然科学基金(52375074)项目资助


Fault diagnosis for spacecraft electromechanical devices enhanced by knowledge graph-RAG
Author:
Affiliation:

1.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; 2.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航天器机电设备因其部件高耦合性及故障级联隐蔽性,对故障诊断的推理效率与可解释性提出了严苛要求。在文本知识驱动的智能故障诊断中,针对传统知识图谱(KG)构建成本高、通用大语言模型(LLM)对特定领域诊断知识专业性不足、检索增强生成(RAG)技术关联推理能力有限的问题,故提出一种本体约束驱动的图谱RAG故障诊断方法。一方面,构建了4层故障诊断本体框架,通过本体注入的提示学习实现LLM对多源诊断知识的规范化抽取,并基于字符比较与嵌入模型的双层相似度校准实现知识图谱的动态集成更新,自主构建一体化的诊断知识图谱基座。另一方面,基于LLM与词向量联合的实体模糊检索,结合幂编码的图谱即时蒸馏方法,在结合图谱节点可视化故障传播路径的同时,针对性地融合故障子图结构特征与上下文知识,提升通用LLM故障溯源与维修策略生成的逻辑完备性。以太阳翼驱动机构(SADA)诊断文本、FMEA表格为验证对象,通过本体注入的提示词,借助通用LLM抽取诊断知识图谱,进一步结合可视化图谱进行诊断问答,结果表明,相比于传统RAG方法,结合故障子图的图谱RAG方法在智能故障诊断问答中的关键词F1分数提高了70.88%,语义相似度提高了11.60%,其回答的准确性、可解释性均优于仅LLM方法与RAG方法,为航天器机电设备的智能化故障诊断提供了理论支撑与技术路径。

    Abstract:

    The high coupling of components and the concealed nature of cascading faults in spacecraft electromechanical devices impose stringent demands on the reasoning efficiency and interpretability of fault diagnosis systems. To address the challenges of high construction costs associated with traditional knowledge graphs (KG), the lack of domain-specific expertise in general-purpose large language models (LLM), and the insufficient associative reasoning capability of retrieval-augmented generation (RAG) in textual knowledge-driven intelligent fault diagnosis, this study proposes an ontology-constrained knowledge graph-RAG fault diagnosis method. Firstly, a four-layer fault diagnosis ontology framework is constructed. Utilizing ontology-injected prompt learning, the LLM achieves standardized extraction of multi-source diagnostic knowledge. A dynamic integration and updating mechanism for the knowledge graph, based on dual-layer similarity calibration involving character comparison and an embedding model, is implemented to autonomously build an integrated diagnostic knowledge graph base. Secondly, leveraging entity fuzzy retrieval that combines LLM and word embeddings, along with a power-encoding-based instant knowledge graph distillation method, the approach incorporates fault subgraph structural features and contextual knowledge while visualizing fault propagation paths via graph nodes. This significantly enhances the logical completeness of fault root cause analysis and maintenance strategy generation by the general-purpose LLM. Validation using diagnostic texts and FMEA tables of the solar array drive assembly (SADA) shows that, compared with traditional RAG methods, the proposed KG-RAG method combined with fault subgraphs improves the keyword F1-score by 70.88% and semantic similarity by 11.60% in intelligent diagnostic Q&A. The results show superior accuracy and interpretability over using LLM or RAG alone, providing substantial theoretical support and a technical pathway for intelligent fault diagnosis of spacecraft electromechanical equipment.

    参考文献
    相似文献
    引证文献
引用本文

赵春州,于劲松,周金浛,高占宝,唐荻音.图谱RAG赋能的航天器机电设备故障诊断[J].仪器仪表学报,2025,46(10):74-85

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码