基于电磁场特征蒸馏的无刷直流电机匝间短路智能辨识
DOI:
CSTR:
作者:
作者单位:

1.安徽大学电气工程与自动化学院合肥230601; 2.中国电力科学研究院有限公司北京100192

作者简介:

通讯作者:

中图分类号:

TM307TH165+.3

基金项目:

安徽省青年基金(2408085QE163)、国家自然科学基金(52375522)项目资助


Intelligent identification of inter-turn short circuits in brushless DC motor based on feature distillation of multi-source electromagnetic field signals
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China; 2.China Electric Power Research Institute, Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无刷直流电机作为工业驱动系统的关键动力单元,精准的状态评估是保障电机安全稳定运行的关键。但是其定子绕组相邻线圈间的绝缘劣化会导致匝间短路发生,而早期匝间短路存在特征信息空间分布零散、冗余信息过多等问题,又给设备的状态评估带来了全新挑战。为此,提出了一种基于电磁场特征蒸馏的无刷直流电机匝间短路智能辨识方法。首先,通过建立电磁等效模型解析了漏磁信号与绕组状态的物理关联,揭示了短路匝数与漏磁通量重分布的非线性规律。其次,结合递归相空间重构技术融合了多源空间的漏磁信号,构建了高信息密度的电磁场特征图谱,突破了传统单维度分析的限制。进一步设计了一种轻量化的MobileViT-CBAM混合模型,利用其内置的特征蒸馏机制实现故障特征的自适应筛选与增强,在保证高精度的同时大幅降低了模型复杂度。最后,通过构建覆盖多种噪声场景的增强训练集,显著提升了模型在复杂工业环境中的鲁棒性。实验结果表明:差异化负载工况下诊断模型对16类匝间短路分类准确率达99.4%,模型参数量与计算速度较主流模型提升超50%。针对另一台不同型号的无刷直流电机开展独立验证,模型准确率为92.3%证明了其优异的泛化能力。该模型通过多源特征融合、轻量化架构与抗干扰策略的协同优化,为工业场景中高可靠性的电机在线监测提供了创新解决方案。

    Abstract:

    Precise condition assessment of brushless direct current motors (BLDCM), as critical power units in industrial drive systems, is essential for ensuring their safe and stable operation. However, insulation degradation between adjacent stator windings can lead to inter-turn short circuit(ITSC). Early-stage ITSC present significant challenges, including spatially scattered and highly redundant characteristic information, posing new difficulties for equipment evaluation. To address these issues, this paper proposes an intelligent ITSC identification method for inter-turn short circuits in BLDCM based on electromagnetic field feature distillation. Firstly, an electromagnetic equivalent model is established to analyze the physical relationship between leakage flux signals and winding states, revealing the nonlinear law governing the spatial redistribution of leakage flux relative to the number of shorted turns. Secondly, multi-source spatial leakage flux signals are fused using recursive phase space reconstruction techniques to construct high-information-density electromagnetic field feature maps, overcoming the limitations of traditional single-dimension analysis.Finally, an augmented training set covering diverse noise scenarios is constructed to significantly improve the model′s robustness in complex industrial environments. Through the synergistic optimization of multi-source feature fusion, lightweight architecture, and anti-interference strategies, this research provides an innovative solution for highly reliable online monitoring of motors in industrial settings.

    参考文献
    相似文献
    引证文献
引用本文

吴振宇,屈先锋,王慧,刘永斌,陆思良.基于电磁场特征蒸馏的无刷直流电机匝间短路智能辨识[J].仪器仪表学报,2025,46(10):107-119

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码