面向通感一体化的逐次变分模态分解生命信号频率检测算法
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学通信与信息工程学院重庆400065

作者简介:

通讯作者:

中图分类号:

TN91TH89

基金项目:


Successive variational mode decomposition vital signal frequency detection algorithm for integration of sensing and communication
Author:
Affiliation:

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通感一体化(ISAC)作为6 G的关键使能技术之一,通过深度融合通信与感知功能,增强了Wi-Fi设备在非接触式生命体征检测中的应用潜力。呼吸率和心率的精确监测对早期疾病预警和健康状态实时监控具有重要意义。针对现有基于ISAC的生命体征检测方法在复杂环境下存在呼吸心跳信号分离效果不理想、抗干扰能力差等问题,提出了一种基于逐次变分模态分解(SVMD)的生命体征信号分离与频率检测算法。首先,通过Wi-Fi设备采集波束成形反馈信息(BFI),并对其进行预处理得到波束成形矩阵(BFM)信号。其次,计算BFM中每一对元素的比率,并结合动态特征子载波筛选和多级去噪技术,从复杂多径环境中精确提取有效的生命体征信号。再次,引入SVMD以利用其逐次提取和无需预设模态数 K的特性,并设计一种基于旅鼠优化算法(ALA)的自适应参数优化方法,用于确定SVMD算法中的关键平衡参数,实现对呼吸和心跳信号的高精度分离。最后,通过快速傅里叶变换和峰值检测完成呼吸率和心率的估计。实验结果表明,在用户异质性、深呼吸、运动后状态和不同距离等多个典型应用场景下,该方法能有效克服多径效应和环境噪声的干扰,保持稳定的检测性能,相比现有方法的呼吸率和心率估计精度显著提高,为基于ISAC的非接触式生命体征检测提供了一种可靠的解决方案。

    Abstract:

    Integrated sensing and communications (ISAC), as a key enabling technology for 6 G, significantly enhances the application potential of Wi-Fi devices in non-contact vital sign monitoring by deeply integrating communication and sensing capabilities. Accurate monitoring of respiratory and heartbeat rates is crucial for early disease warning and real-time health status monitoring. However, current ISAC-based vital sign detection methods often suffer from suboptimal separation of respiratory and heartbeat signals and limited robustness against interference in complex environments. To address these challenges, a vital sign signal separation and frequency detection algorithm based on successive variational mode decomposition (SVMD) is proposed. Firstly, beamforming feedback information (BFI) is collected via Wi-Fi devices and preprocessed to obtain the beamforming matrix (BFM) signal. Subsequently, the ratio between each pair of elements in the beamforming matrix is calculated, and effective vital sign signals are accurately extracted from complex multipath environments by combining dynamic feature subcarrier screening and multi-stage denoising techniques. Furthermore, SVMD is introduced to leverage its characteristics of sequential extraction and independence from presetting the number of modes K. An adaptive parameter optimization method based on the artificial lemming algorithm (ALA) is designed to determine the key balance parameter in SVMD, enabling high-precision separation of respiratory and heartbeat signals. Finally, respirator and heartbeat rates are estimated using Fast Fourier Transform and peak detection. Experimental results demonstrate that, across various typical application scenarios, including user heterogeneity, deep breathing, post-exercise state, and varying distances, the proposed method effectively mitigates the impact of multipath effects and environmental noise, maintains stable detection performance, and significantly improves the estimation accuracy of respiratory and heartbeat rates compared to existing methods. The proposed algorithm provides a reliable solution for non-contact vital sign detection based on ISAC.

    参考文献
    相似文献
    引证文献
引用本文

蒲巧林,张杰龙,周牧,谭明燚.面向通感一体化的逐次变分模态分解生命信号频率检测算法[J].仪器仪表学报,2025,46(11):62-73

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码