三层互补形状线圈组合结构的时栅角位移传感器
DOI:
CSTR:
作者:
作者单位:

1.重庆理工大学机械工程学院重庆400054; 2.重庆理工大学电气与电子工程学院重庆400054

作者简介:

通讯作者:

中图分类号:

TH712

基金项目:

国家自然科学基金项目(52175454)、重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0382)、重庆市教委科学技术研究计划重点项目(KJZD-K202301106)、重庆理工大学研究生创新项目(gzlcx20252013)资助


A time-grating angular displacement sensor with a three-layer complementary shape coil combination structure
Author:
Affiliation:

1.School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; 2.School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前研制的磁场式时栅角位移传感器磁场感应线圈在不同间隙耦合到的磁场性质不同,导致传感器对时变磁场有效面积利用率低、磁场拾取能力弱、感应信号幅值小等问题,影响传感器对极内的残余误差成分与大小,故提出了一种三层互补形状线圈组合结构的时栅角位移传感器。搭建数学模型分析传感器激励气隙磁场空间分布特性,提出气隙磁场分层耦合理论,以此将气隙磁场分为3种类型。建立三层互补形状线圈组合结构的时栅角位移传感器测量模型,激励线圈采用双层互补式结构,使线圈两端对磁场的约束能力相互补偿让磁场分布更均匀;感应线圈采用三层互补形状线圈组合结构,不同形状线圈耦合对应类型气隙磁场,使传感器信号幅值与稳定性大幅提高。分析平面感应线圈磁场耦合原理及传感器信号处理方法,向激励线圈通入两路激励信号,由感应线圈得到测量行波信号并通过鉴相的方式解算出角位移量。通过电磁仿真对传感器进行误差分析与结构参数优化,采用PCB工艺制作传感器样机进行实验验证。仿真与实验结果表明:相较于采用传统单层耦合结构,传感器测量精度提高了12.6%,空间气隙磁场引入的谐波误差减小,感应信号幅值与稳定性提高,提升了信噪比,传感器最佳安装间隙为0.6 mm,传感器测量精度为±83″。

    Abstract:

    To address the issue that the induction coil of existing magnetic-field-based time-grating angular displacement sensors couples with different magnetic-field characteristics at different air-gap heights, resulting in low utilization of the effective time-varying magnetic-field area, weak magnetic-field pickup capability, small induced-signal amplitude, and consequently increased residual errors within a pole pitch, this study proposes a time-grating angular displacement sensor featuring a three-layer complementary coil-shape assembly. A mathematical model is established to analyze the spatial distribution of the excitation magnetic field in the air gap. Based on this, a stratified coupling theory is developed, enabling the air-gap magnetic field to be categorized into three types. Based on this theory, a measurement model of the proposed sensor is constructed. The excitation coil adopts a double-layer complementary winding structure that enables mutual compensation of magnetic-field constraints at the ends of the winding, resulting in a more uniform excitation field. The induction unit employs a three-layer complementary coil-shape assembly, in which coils of different geometries are placed at different air-gap heights to couple with their corresponding air-gap magnetic-field types. This design significantly improves the amplitude and stability of the induced signal. The principle of magnetic field coupling of planar induction coils and the sensor signal processing method are analyzed: two channels of excitation signals are applied to the excitation coil, the measured traveling wave signal is obtained from the induction coil, and the angular displacement is calculated through phase discrimination. The error analysis and structural parameter optimization of the sensor are carried out through electromagnetic simulation, and the sensor prototype was made by PCB process for experimental verification. The simulation and experimental results show that compared with the traditional single-layer coupling structure, the measurement accuracy of the sensor is improved by 12.6%, the harmonic error introduced by the space air gap magnetic field is reduced, the amplitude and stability of the induced signal are improved, and the signal-to-noise ratio is improved. The optimal installation gap of the sensor is 0.6 mm, and the measurement accuracy of the sensor is ±83″.

    参考文献
    相似文献
    引证文献
引用本文

杨继森,罗云沛,曹峻杰,易靖松,张静.三层互补形状线圈组合结构的时栅角位移传感器[J].仪器仪表学报,2025,46(10):230-242

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码