基于动态人工势场的机器人重构轨迹平滑避障方法研究
DOI:
CSTR:
作者:
作者单位:

1.厦门大学萨本栋微米纳米科学技术研究院厦门361005; 2.闽西职业技术学院信息工程学院龙岩364021

作者简介:

通讯作者:

中图分类号:

TP241.2TH166

基金项目:


Research on smooth obstacle avoidance for robot reconstructed trajectories based on dynamic artificial potential fields
Author:
Affiliation:

1.Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China; 2.Information Engineering College, Minxi Vocational and Technical College, Longyan 364021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统避障算法在处理机器人重构轨迹时无法保证轨迹相似性和平滑性的问题,提出了一种基于动态人工势场的机器人重构轨迹平滑避障方案。首先采用高斯混合模型和高斯混合回归来对采样的轨迹进行建模和重构,分别构建吸引子的引力势场和障碍物的斥力势场,在空间中叠加出一个V形延伸的势场,将轨迹限制在演示区域内,从而提高轨迹的相似性。在此基础上采用动态人工势场法来引导避障轨迹的生成,通过设计吸引子的运动方式和障碍物的斥力模型来实现轨迹的跟踪和避障。最后,提出了一种基于sigmoid函数的正向-逆向融合规划策略,将正向规划轨迹的后半段和逆向规划轨迹的后半段融合在一起,进一步提高轨迹的平滑性。为验证方案的有效性,分别进行了人类手写字母数据集的仿真实验和六轴机器人的轨迹避障实物实验。实物实验表明,使用该方案生成的避障轨迹平均曲率仅为 0.035 cm-1,平均跟踪误差仅为2.96 cm,相较于快速扩展随机树法分别降低了20.1%和66.9%,相较于动态运动基元算法分别降低了28.5%和20.8%。本研究实现了保留机器人重构轨迹形状和特征下的轨迹平滑避障,在避障过程中能够同时兼顾轨迹相似性和平滑性,使得基于演示学习技术控制的机器人能够更加灵活地应用在复杂工业场景中。

    Abstract:

    In response to the problem that traditional obstacle avoidance algorithms cannot guarantee trajectory similarity and smoothness when processing robot reconstruction trajectories, this paper proposes a robot reconstruction trajectory smooth obstacle avoidance scheme based on dynamic artificial potential field. Firstly, Gaussian mixture model and Gaussian mixture regression are used to model and reconstruct the sampled trajectories. The gravitational potential field of the attractor and the repulsive potential field of the obstacle are constructed separately, and a V-shaped extended potential field is superimposed in space to confine the trajectories within the demonstration area, thereby improving the similarity of the trajectories. On this basis, the dynamic artificial potential field method is adopted to guide the generation of obstacle avoidance trajectories, with trajectory tracking and obstacle avoidance achieved by designing the motion mode of attractors and the repulsive force model of obstacles. Finally, a forward-backward fusion planning strategy based on sigmoid function is proposed, which integrates the latter half of the forward planning trajectory and the latter half of the backward planning trajectory together to further improve the smoothness of the trajectory. To verify the effectiveness of the proposed scheme, simulation experiments were conducted on a human handwritten letter dataset and physical experiments were conducted on the trajectory obstacle avoidance of a six-axis robot. Physical experiments have shown that the average curvature of the obstacle avoidance trajectory generated using this scheme is only 0.035 cm-1, and the average tracking error is only 2.96 cm. Compared with the rapidly-exploring random tree method, these values are reduced by 20.1% and 66.9% respectively, and compared with the dynamic motion element algorithm, they are reduced by 28.5% and 20.8% respectively. This study achieved smooth obstacle avoidance while preserving the shape and features of the reconstructed trajectory. During the obstacle avoidance process, both trajectory similarity and smoothness were taken into account, enabling robots controlled by demonstration learning techniques to be more flexibly applied in complex industrial scenarios.

    参考文献
    相似文献
    引证文献
引用本文

林金亮,苏永彬,刘暾东.基于动态人工势场的机器人重构轨迹平滑避障方法研究[J].仪器仪表学报,2025,46(9):234-244

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码