数字孪生驱动小波注意力迁移网络的齿轮箱故障诊断方法
DOI:
CSTR:
作者:
作者单位:

重庆大学高端装备机械传动全国重点实验室重庆400044

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金创新研究群体(T2421001)、国家自然科学基金(52275087)、山西省创新生态服务支撑专项-创新平台基地建设专项(202404010911010Z)、高端装备机械传动全国重点实验室自主研究课题(SKLMT-ZZK-2024Z07)项目资助


Digital twin driven wavelet attention transfer network for gearbox fault diagnosis
Author:
Affiliation:

State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对仿真数据驱动的故障诊断方法存在动力学模型响应与实测数据分布差异较大、模型泛化性差的问题,提出了一种数字孪生驱动小波注意力迁移网络的齿轮箱故障诊断方法。首先,基于集中参数法建立了齿轮传动系统虚拟模型,实现物理实体的映射,并采用实测正常数据对虚拟模型中关键敏感参数进行优化修正,进而融合齿轮故障失效机理模型生成丰富的孪生故障数据集。其次,设计了离散小波注意力特征提取网络模型,该模型的设计融合了离散小波变换的多尺度信号分解和通道注意力机制动态聚焦强相关故障特征的特点,能在小波域层面上有效地提取孪生数据与实测数据的域不变故障特征。然后,考虑了孪生与实测数据的边缘分布及条件分布差异,结合最大均值差异和动态局部最大均值差异提出了联合子域自适应准则,匹配孪生与实测数据的联合分布差异,实现齿轮箱孪生模型向真实物理实体的迁移故障诊断。最后,在多级平行齿轮箱实验台上对所提方法进行试验验证,试验结果表明:所提方法在所有迁移任务下均获得了较优的诊断结果,平均分类精度可达98.10%,能够在含标签的高质量故障数据稀缺条件下有效地实现孪生数据向实测数据的迁移故障诊断。

    Abstract:

    Aiming at the problems of large discrepancies between dynamic model response and the distribution of measured data, as well as the poor generalization in fault diagnosis methods driven by simulation data, a gearbox fault diagnosis method based on digital twin driven wavelet attention transfer network is proposed. Firstly, a virtual model of the gear transmission system was built using the lumped parameter method to map the physical system. Key parameters were optimized with measured normal data, and fault mechanism models were integrated to generate a rich twin fault dataset. Secondly, a discrete wavelet attention-based feature extraction network was designed, combining the multi-scale signal decomposition capability of discrete wavelet transform with the channel attention mechanism that dynamically focuses on strongly correlated fault features. This model effectively extracts domain-invariant fault features from both twin and measured data in the wavelet domain. Then, to address differences in marginal and conditional distributions between twin and measured data, a joint subdomain adaptation criterion was proposed by combining maximum mean discrepancy (MMD) and dynamic local MMD. This criterion measures the joint feature distribution discrepancy between the two domains, enabling the transfer of the gear twin model to real-world fault diagnosis. Finally, the proposed method was experimentally validated on a multi-stage parallel gearbox test bench. Results showed that it achieved superior diagnostic performance across all transfer tasks, with an average classification accuracy of 98.10%. The method effectively enables fault diagnosis transfer from twin data to measured data under conditions of limited labeled high-quality fault data.

    参考文献
    相似文献
    引证文献
引用本文

朱朋,邓蕾,汤宝平,张小龙,刘永刚.数字孪生驱动小波注意力迁移网络的齿轮箱故障诊断方法[J].仪器仪表学报,2025,46(10):86-95

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码