大模型在工业缺陷检测领域的应用现状与展望
DOI:
CSTR:
作者:
作者单位:

1.湖南大学电气与信息工程学院长沙410082; 2.湖南大学机器人视觉感知与控制技术 国家工程研究中心长沙410082

作者简介:

通讯作者:

中图分类号:

TH89TP391.41

基金项目:

国家自然科学基金面上项目(52377009)、湖南省科技创新领军人才项目(2023RC1039)资助


Application status and prospects of large models in the field of industrial defect detection
Author:
Affiliation:

1.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2.National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha 410082, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业缺陷检测是现代工业生产和运维的关键环节,是产品质量、生产效率、安全性的重要保障。大模型凭借其复杂逻辑推理能力与泛化能力成为了推动新一轮人工智能浪潮的关键引擎。大模型的涌现为工业缺陷检测提供了一个新范式,同时也带来了新机遇和新挑战。本综述总结了大模型在工业缺陷检测领域的应用现状。首先,对大模型的发展历程进行了系统梳理,并且详细介绍了大模型的核心技术,包括模型架构、多模态数据处理与预训练技术、微调技术、对齐技术和高效推理技术。接着,综述了基于传统机器学习和深度学习的缺陷检测方法,并与缺陷检测大模型进行对比,总结了各自的优点和局限性。然后,聚焦于工业缺陷检测领域,介绍了支撑大模型研究与性能评估的开源数据集和性能评价方法,并梳理了大模型目前的主要应用方向,即缺陷检测与定位、复杂场景与微小缺陷检测、小样本与零样本自适应检测、交互式缺陷分析与决策支持、缺陷数据生成与自动标注。最后,深入分析了工业缺陷检测大模型目前面临的数据质量与安全、高可靠性要求、成本限制与可持续发展、缺乏统一测评标准等挑战,并对其未来发展趋势进行了展望,旨在为大模型技术在工业缺陷检测领域的进一步发展和广泛应用提供有价值的参考和见解。

    Abstract:

    Industrial defect detection is a critical component of modern industrial production and operation, ensuring product quality, production efficiency, and safety. The complex logical reasoning and generalization capabilities of large models have positioned them as the critical force behind the new wave of artificial intelligence. With the emergence of large models, a new paradigm is established for industrial defect detection, bringing both fresh opportunities and challenges. This article provides a comprehensive review of the current application status of large models in the field of industrial defect detection. Firstly, the development process of large models is systematically combed, and the core technologies are introduced in detail, including model architecture, multimodal data processing, pre-training techniques, fine-tuning methods, alignment strategies and efficient reasoning mechanisms. Secondly, a survey of traditional methods based on machine learning and deep learning for industrial defect detection is provided, followed by a comparison with large model-based approaches and a summary of their respective strengths and limitations. Then, focusing on the industrial defect detection domain, the review introduces commonly used open-source datasets that support large model research and evaluation, as well as the performance evaluation methods of large models. Furthermore, it categorizes the current main application of large models into five directions, including defect detection and localization, defect detection in complex scenarios and micro-defect detection, few-shot and zero-shot adaptive detection, interactive defect analysis and decision support, and defect data generation with automatic annotation. Finally, this article thoroughly analyzes the challenges confronting large models in industrial defect detection, such as data quality and security, high-reliability requirements, cost constraints and sustainable development, and the lack of unified evaluation standards, while providing an outlook on their future trends. The review aims to provide valuable references and insights for the continued advancement and broader implementation of large models in industrial defect detection.

    参考文献
    相似文献
    引证文献
引用本文

何毓芬,何赟泽,尹勇,邓堡元,王耀南.大模型在工业缺陷检测领域的应用现状与展望[J].仪器仪表学报,2025,46(10):22-41

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码