基于双层级显著性驱动的车辆部件检测方法
DOI:
CSTR:
作者:
作者单位:

1.华北电力大学自动化系保定071003; 2.保定市电力系统智能机器人感知与控制重点实验室保定071003

作者简介:

通讯作者:

中图分类号:

TP391.41TH39

基金项目:

国家自然科学基金(62373151,U21A20486)、河北省自然科学基金(F2023502010)、中央高校基本科研业务费专项(2024MS136)项目资助


A dual-level saliency-driven vehicle component detection method
Author:
Affiliation:

1.Department of Automation, North China Electric Power University, Baoding 071003, China; 2.Baoding Key Laboratory of Intelligent Robot Perception and Control in Electric Power System, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高精度的车辆部件检测与分割技术对智能定损系统中辅助定位损伤部件至关重要,但常面临着复杂场景下存在的背景干扰抑制难题,以及传统检测方法局限于单层次特征表征而导致的检测效能瓶颈。为解决这一问题,提出了一种基于双层级显著性驱动的车辆部件检测方法。在图像层面,引入DeepLabV3结合3种损失函数提取显著前景以削弱背景干扰;在特征层面,基于YOLOv11构建检测与分割框架,在特征提取阶段融合空间注意力金字塔池化结构以提升多尺度特征聚合能力,并设计注意力引导的显著性图模块以实现全局建模与空间增强。为验证方法有效性,构建了一个面向多部件检测任务的车辆部件数据集,并在该数据集上进行了大量实验,消融实验验证了各模块的有效性。在对比实验中,检测准确率和分割准确率分别较基线模型提升3.5%和3.7%,结合可视化结果进一步表明该方法更聚焦于部件显著区域,能有效减少复杂背景引起的误检与漏检。此外,该方法在公共数据集Car Seg上展现出良好的泛化能力,在多个评价指标上均取得最优性能。因此,双层级显著性驱动架构通过显著前景提取和注意力引导多尺度特征聚合,显著提升了对车辆部件的检测精度,为车辆保险行业的智能定损技术提供了新的实践参考。

    Abstract:

    High-precision vehicle component detection and segmentation play a vital role in intelligent damage assessment systems by assisting in the accurate localization of damaged parts. However, challenges remain due to complex backgrounds and the performance bottlenecks of traditional detection methods constrained by single-level feature representations. To address these issues, this article proposes a dual-level saliency-driven vehicle component detection method. At the image level, DeepLabV3 is employed with a combination of three loss functions to extract salient foreground regions and suppress background interference. At the feature level, a detection and segmentation framework is formulated based on YOLOv11, where a spatial attention pyramid pooling structure is integrated during feature extraction to enhance multi-scale feature aggregation. Additionally, an attention-guided saliency map module is designed to achieve global modeling and spatial enhancement. To evaluate the effectiveness of the proposed method, a customized vehicle component dataset for multi-part detection is constructed, and extensive experiments are conducted. Ablation studies confirm the contribution of each module. In comparative experiments, the method achieves improvements of 3.5% in detection accuracy and 3.7% in segmentation accuracy over the baseline model. Visualization results further show that the proposed approach focuses more accurately on salient component regions and effectively reduces false detections and missed detections caused by complex backgrounds. Moreover, the method shows strong generalization capability on the public Car Seg dataset, achieving superior performance across multiple evaluation metrics. Overall, the dual-level saliency-driven architecture significantly enhances vehicle component detection performance through salient foreground extraction and attention-guided multi-scale feature aggregation, providing new practical insights for intelligent damage assessment in the vehicle insurance industry.

    参考文献
    相似文献
    引证文献
引用本文

翟永杰,吴梓沣,周迅琪,魏乐涛,王乾铭.基于双层级显著性驱动的车辆部件检测方法[J].仪器仪表学报,2025,46(5):226-241

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码