一种GNSS/PDR弹性图优化自主导航方法
DOI:
CSTR:
作者:
作者单位:

1.东南大学仪器科学与工程学院南京210096; 2.北京航天控制仪器研究所北京410083

作者简介:

通讯作者:

中图分类号:

TN96

基金项目:

国家自然科学基金项目(62388101,62203111)、航空科学基金项目(20220008069003)、江苏省科技项目(BM2023013-4,BK2023143-4)资助


A method of resilient factor graph optimization-based GNSS/PDR autonomous navigation
Author:
Affiliation:

1.School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China; 2.Beijing Aviation Control Equipment Research Institute, Beijing 410083, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对城市峡谷等复杂场景下,智能手机全球导航卫星系统(GNSS)信号易受多径和非视距效应干扰,从而导致定位精度与可靠性显著下降的问题,故提出一种基于多源自主导航系统理论框架的全球导航卫星系统/行人航位推算(GNSS/PDR)弹性图优化自主导航方法。该方法从系统可检测性与可重构性两个维度出发,设计了一种状态自适应故障检测与梯度下降回归自主重构机制的弹性容错架构,以增强导航系统在动态变化环境中的鲁棒性能。在可检测性方面,设计了一种状态关联的动态故障检测机制:若上一历元未检测到故障,采用滑动窗口下的动态3σ统计检测法进行异常判断;若上一历元已检测到故障,则切换为基于指数加权移动平均的动态阈值策略,以持续跟踪潜在异常。在可重构性方面,一旦检测到故障,系统能够通过梯度下降回归方法对GNSS/PDR算法进行故障诊断与自主重构。该重构过程首先利用历史新息完成系统状态的预测,其次根据异常新息与修复新息之间的动态关系对完成幅值修正,最终实现对异常观测值的动态修复。经实验验证,本方法的定位平均误差较扩展卡尔曼滤波(EKF)算法、基于Huber核的M估计EKF算法、因子图优化(FGO)算法和基于Huber核的M估计FGO算法下降了20%以上。这表明该方法在提升基于智能手机的行人导航在复杂多径和非视距环境下的定位精度和鲁棒性上具有一定的优势,为未来消费级设备的精度定位应用提供了解决思路。

    Abstract:

    To address the challenge of degraded positioning accuracy and reliability in smartphone global navigation satellite system (GNSS) signals caused by multipath and non-line-of-sight effects in complex environments such as urban canyons and dense high-rise areas, this paper proposes a resilient graph optimization-based global navigation satellite system/pedestrian dead reckoning (GNSS/PDR) autonomous navigation method within a multi-source integrated navigation system framework. Focusing on system detectability and reconfigurability, the approach designs an elastic fault-tolerant architecture that incorporates state-adaptive fault detection and gradient descent regression-based autonomous reconfiguration, aiming to enhance the robustness of the navigation system under dynamically changing environmental conditions. In terms of detectability, a state-correlated dynamic fault detection mechanism is introduced. When no fault is detected in the previous epoch, a sliding-window-based dynamic 3σ statistical detection method is applied. When a fault is detected in the previous epoch, a dynamic threshold strategy based on exponentially weighted moving average is employed for continuous anomaly monitoring. In terms of reconfigurability, once a fault is identified, the system performs fault diagnosis and autonomous reconfiguration using a gradient descent regression-based GNSS/PDR algorithm. The reconfiguration process first utilizes historical innovations to predict the system state, then performs magnitude correction based on the dynamic relationship between abnormal and repaired innovations, and finally achieves dynamic recovery of abnormal observations. Experimental results demonstrate that the proposed method reduces the average positioning error by more than 20% compared to traditional extend Kalman filter (EKF), Huber-based M-estimation EKF, factor graph optimization (FGO), and Huber-based M-estimation FGO algorithms. These findings indicate that the proposed method offers significant advantages in enhancing the positioning accuracy and robustness of smartphone-based pedestrian navigation under challenging multipath and NLOS environments, providing a valuable reference for the development of high-precision positioning applications in future consumergrade devices.

    参考文献
    相似文献
    引证文献
引用本文

刘灵,孟骞,马骁,高志强,孟凡琛.一种GNSS/PDR弹性图优化自主导航方法[J].仪器仪表学报,2025,46(10):307-317

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码