基于随机有限集理论的雷达抗干扰目标跟踪方法
DOI:
CSTR:
作者:
作者单位:

1.重庆交通大学信息科学与工程学院重庆400074; 2.重庆赛迪奇智人工智能科技有限公司重庆400074; 3.重庆交通大学交通运输学院重庆400074

作者简介:

通讯作者:

中图分类号:

TN95TH89

基金项目:

重庆市渝中区技术创新与应用发展项目(20240103)资助


Random finite set theory-based method for radar anti-interference target tracking
Author:
Affiliation:

1.School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2.Chongqing Saidi Qizhi Artificial Intelligence Technology Co., Ltd., Chongqing 400074, China; 3.School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在密集车辆感知场景中,由于在车辆间雷达发射信号缺少协调机制,使得接收雷达回波极易受到邻近车辆发射信号的干扰,导致雷达视野内产生虚假目标并引发真实目标跟踪失败。为解决上述挑战,提出一种基于高斯混合概率假设密度滤波的雷达抗干扰目标跟踪方法。首先,利用时频变换技术对雷达接收信号进行特征分析,阐明干扰信号对真实目标回波的影响机理。接着,考虑到干扰强度变化会造成检测目标时变,不同于传统针对目标点的“状态-量测”显式关联思路,基于随机有限集理论构建状态和量测集合,并引入自适应关联权重,建模“状态-量测”集合间的隐式映射关系。最后,为进一步融入“真实-虚假”目标的时空分布特征,采用高斯混合概率假设密度滤波方法求解上述过程,能够有效降低虚假目标干扰,并实现动态数目条件下目标的准确跟踪。利用TI公司的毫米波雷达在真实场景中开展了方法验证,于被测车辆前方布设同频雷达以施加射频干扰。干扰条件下,雷达谱底噪显著抬升,信噪比降至-10 dB以下。试验结果表明,该方法在目标交叉与遮挡等复杂场景中仍能实现稳定跟踪;虚假目标抑制性能卓越,使跟踪误差较其他算法降低约50%,充分验证了该方法的优异抗干扰性能。

    Abstract:

    In dense vehicle-perception environments, the lack of coordination among vehicular radar transmissions leads to severe mutual interference, resulting in false target generation and failure in tracking actual objects. To overcome these challenges, this paper proposes a radar anti-interference target-tracking method based on the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter. Initially, time-frequency transformation techniques are employed to extract salient signal features, revealing how interfering signals distort genuine radar echoes. Recognizing that interference intensity causes time-varying detectability of targets, the proposed approach departs from traditional explicit state-measurement association strategies. Instead, both state and measurement sets are modeled within the Random Finite Set (RFS) framework, and an adaptive association weight is introduced to represent their implicit correlation. To further leverage the spatiotemporal distribution characteristics of true and false targets, the GM-PHD filter is utilized to perform multi-target tracking and false target suppression under dynamically changing target counts. Real-world validation is conducted using a TI millimeter-wave radar platform, where an identically tuned radar placed in front of the test vehicle introduces deliberate RF interference. Under these conditions, the radar′s noise floor is significantly elevated and the signal-to-noise ratio drops below -10 dB. Experimental results demonstrate that the proposed method maintains robust and accurate tracking performance in challenging scenarios, including target crossing and occlusion. Compared with benchmark algorithms, it achieves approximately a 50% reduction in tracking error, thereby validating its effectiveness and strong anti-interference capability in practical vehicular environments.

    参考文献
    相似文献
    引证文献
引用本文

蒋康,张志勇,张振源,杜雪飞,谭锐.基于随机有限集理论的雷达抗干扰目标跟踪方法[J].仪器仪表学报,2025,46(5):299-311

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码