基于轻量化改进和模型剪枝的SAR图像飞机目标检测
DOI:
CSTR:
作者:
作者单位:

1.中国民航大学电子信息与自动化学院天津300300; 2.中国民航大学工程技术训练中心天津300300

作者简介:

通讯作者:

中图分类号:

TP75TH39

基金项目:

中央高校基本科研业务费中国民航大学专项(3122020043)、中国民航大学研究生科研创新(2023YJSKC02004)项目资助


Lightweight SAR image aircraft target detection based on lightweight improvement and model pruning
Author:
Affiliation:

1.College of Information Engineering and Automation,Civil Aviation University of China, Tianjin 300300, China; 2.Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于合成孔径雷达独特的成像机制,现有的深度学习检测算法,难以在精度和速度之间找到良好的平衡。因此针对边缘端应用需求,结合剪枝方法设计了一种更轻量的SAR图像飞机目标检测网络SAERFDnet。其以YOLOv8n模型为基线,主干使用重参数化大核卷积进行特征提取,颈部使用自适应多尺度离散特征融合模块,以较浅的网络深度获得更大的有效感受野。其次,改进网络在检测头分类分支引入可变形卷积,使得网络更关注不同类别目标的几何特征差异,在回归分支引入频率自适应扩张卷积,加强对图像高频区域的目标定位能力。最后,使用了模型剪枝技术获得了更轻量高效的模型。采用3个公开的实测数据集进行实验,在SAR-AIRcraft-1.0数据集上的结果表明,该方法以0.5 M参数量和2 G FLOPS的参数量和计算量达到了96.3% mAP50和72.% mAP50-95,相比YOLOv8n模型参数量降低83.3%,计算量降低75.3%,同时提高了0.7% mAP50和2.2% mAP50-95的检测精度,对比其他模型检测结果,该方法能在保证检测精度的条件下,有效提升SAR图像飞机目标检测的检测效率。此外,在SADD数据集和高分三号飞机目标数据集上进行了迁移实验,结果均表明该方法具有良好的泛化性和鲁棒性。

    Abstract:

    Due to the unique imaging mechanism of synthetic aperture radar (SAR), existing deep learning detection algorithms struggle to achieve an optimal balance between accuracy and speed. To address the requirements for edge applications, this paper proposes a lightweight SAR image aircraft target detection network, SAERFDnet, which integrates pruning techniques for optimization. Based on YOLOV8n, SAERFDnet utilizes re-parametrized large kernel convolutions for feature extraction, while the neck of the network incorporates an adaptive multiscale discrete feature fusion module, providing a larger effective receptive field with a shallower network depth. Additionally, a deformable convolution is introduced in detection head classification branch to enhance the network′s focus on the geometric feature differences of different target classes. A frequency-adaptive dilation convolution is employed in the regression branch to strengthen the model′s ability to locate targets in high-frequency image regions. Finally, model pruning is applied to further reduce the model size and improve computational efficiency. Experiments conducted on three publicly available datasets demonstrate that the proposed method achieves 96.3% mAP50 and 72.5% mAP50-95 on the SAR-AIRcraft-1.0 dataset, with 0.5M parameters and 2G FLOPS, representing a reduction of 83.3% in parameters and 75.3% in FLOPS compared to the YOLOv8n model, while improving detection accuracy by 0.7% mAP50 and 2.2% mAP50-95. Compared to other models, the proposed method effectively improves detection efficiency in SAR image aircraft target detection while maintaining high detection accuracy. Furthermore, transfer experiments on the SADD dataset and GaoFen-3 aircraft target dataset show that the proposed method exhibits excellent generalization and robustness.

    参考文献
    相似文献
    引证文献
引用本文

韩萍,白继睿,周杰龙,程争.基于轻量化改进和模型剪枝的SAR图像飞机目标检测[J].仪器仪表学报,2025,46(9):110-124

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-22
  • 出版日期:
文章二维码