基于改进独立成分分析的雨声信号盲源分离研究
DOI:
CSTR:
作者:
作者单位:

1.南通理工学院电气与能源工程学院南通226001; 2.南京信息工程大学电子与信息工程学院南京210044

作者简介:

通讯作者:

中图分类号:

TN911.7TH113.1

基金项目:

国家自然科学基金(62171228)、江苏省研究生科研与实践创新计划(SJCX25_0512)、南通理工学院科技创新与服务地方团队(KCTD008)项目资助


Research on blind source separation of rain sound signal based on the improved ICA
Author:
Affiliation:

1.School of Electrical and Energy Engineering, Nantong Institute of Technology, Nantong 226001, China; 2.School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统基于负熵等目标函数的快速独立成分分析法(FASTICA)在雨声信号盲源分离中产生的幅度扩大,分离性能较差等问题,提出了一种改进的独立成分分析(ICA)方法。不再采用传统基于负熵、峰度等复杂目标函数,选择基于最大化信号的非高斯性,通过双曲余弦函数与对数函数的组合进行非线性变换,同时以源信号与分离信号的均值差平方重新构建目标函数,同时为了提高算法的运行、收敛速度以及寻优能力,引入粒子群算法(PSO)替代传统梯度下降法,利用其快速全局搜索能力对目标函数进行寻优,有效规避ICA在迭代过程中易陷入局部最优的问题,获取最佳解混矩阵后进行雨声混合信号的分离,提取较纯净的雨声信号。实验结果表明,改进后的ICA能够满足盲源分离需求,分离指标(PI)达到了10-2级别。为了进一步验证所提算法的有效性与稳定性,在不同雨声类型与环境噪声混合场景下分别进行了盲源分离实验,结果显示所提改进ICA算法在不同环境噪声背景下的混合信号中均能有效分离并恢复出源雨声信号。此外,将改进目标函数的ICA与基于负熵的FASTICA算法进行对比,所提算法不仅能够有效解决FASTICA算法产生的幅度扩大问题,并且收敛速度更快,均方误差(MSE)降低了两个数量级,不同雨声类型下的信号失真比(SDR)均提升了近20 dB。

    Abstract:

    An improved independent component analysis (ICA) method is proposed to address the issues of amplitude amplification and poor separation performance in blind source separation of rain sound signals using the traditional fast independent component analysis (FASTACA) method based on objective functions such as negative entropy. Traditional complex objective functions (negative entropy, kurtosis, etc.) are no longer used. Instead, we choose non-Gaussianity based on maximizing the signal. A combination of the hyperbolic cosine function and the logarithmic function for nonlinear transformation is utilized. Meanwhile, we reconstruct the objective function based on the mean difference square between the source signal and the separated signal. To improve the algorithm′s running, convergence speed, and optimization ability, the particle swarm optimization (PSO) algorithm is utilized instead of the traditional gradient descent method. Its fast global search ability is adopted to optimize the objective function, effectively avoiding the problem of ICA getting trapped in local optima during the iteration process. After obtaining the optimal solution mixing matrix, the rain sound mixed signal and extracting a purer rain sound signal are separated. The experimental results show that the improved ICA can meet the requirements of blind source separation, and the separation index (PI) reaches a level of 10-2. To further evaluate the effectiveness and stability of the proposed algorithm, blind source separation experiments are conducted in mixed scenarios of different types of rain sounds and environmental noise. The results show that the improved ICA algorithm can effectively separate and recover the source rain sound signal in mixed signals under different environmental noise backgrounds. In addition, comparing the ICA algorithm with the improved objective function and the FASTACA algorithm based on negative entropy, the proposed algorithm not only effectively solves the amplitude expansion problem caused by the FASTACA algorithm, but also converges faster, reducing the mean square error (MSE) by two orders of magnitude. The signal distortion ratio (SDR) under the rain sound type is increased by nearly 20 dB.

    参考文献
    相似文献
    引证文献
引用本文

曾豫宁,行鸿彦.基于改进独立成分分析的雨声信号盲源分离研究[J].仪器仪表学报,2025,46(5):135-145

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码